Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed and widely used. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femoro-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femoro-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system and tensor device intra-operatively in TKA. Sixty-one consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. During surgery, using a tensor device, after bony cut of femur and tibia, joint gaps were assessed in 0 and 90 degrees in flexion. Then, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal and sagittal relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) in the navigation system. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with a ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p< 0.05).Introduction
Materials and Methods
To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed Objectives
Methods
Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femolo-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system intra-operatively in TKA. Twenty-four consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. In all patients, difference between extension and flexion gap was under 3mm after bony cut of femur and tibia. During surgery, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal (valgus/varus), sagittal (anterior/posterior) and rotational relative movement between femur and tibia were obtained by interpreting kinematics, which display tables throughout the range of motion (ROM) (Figure1). During record of kinematics, the surgeon gently lifted the experimental thigh three times, flexing the hip and knee. In each ROM (30, 45, 60, 90, max degrees), the data were analyzed with paired t-test, and an ANOVA test, and mean values were compared by the multiple comparison test (Turkey HSD test) (p < 0.05).Introduction
Materials and Methods
It is essential to investigate the tribological maturation of tissue-engineered cartilage that is to be used in medical applications. The frictional performances of tissue engineered cartilage have been measured using flat counter surfaces such as stainless steel, glass or ceramics. However, the measured friction performances were significantly inferior to those of natural cartilage, likely because of cartilage adhesion to the counter surface. Tamura et al. reported that a poly (2- methacryloyloxyethyl phosphoryl-choline (MPC)) grafted surface shows low friction coefficient against cartilage without the adhesion to be equivalent to those for natural cartilage-on-cartilage friction. [1] On the other hand, Yamamoto et al. reported that applying a relative sliding movement had a potential to alter the expression of tribological function of regenerated cartilage of chondrocytes. [2] In this paper, the effects of the relative sliding movement on the expression of bone marrow stromal cells (BMSC)s were investigated using the poly(MPC) grafted surface as a counter surface. BMSCs seeded onto fibroin sponge scaffolds were cultured by using the stirring chamber system (Figure 1), which can apply a relative tribological movement to the surface of the specimens. Three culture conditions were applied (dynamic in stirring chamber as frequency as 40 min [D1], as 40 sec [D2] and static in stirring chamber group [S]). The specimens were set into stirrer on a poly(MPC) grafted surface (MPC polymer coated surface, SANSYO). As a counter surface in friction tests, the poly(MPC) grafted surface was prepared by atom transfer radical polymerization, and the regenerated cartilage was prepared by seeding 5×105 cells (BMSCs from rat bone marrow) onto fibroin sponge scaffolds (8 mm diameter and 1 mm thickness) and by 14 days culture.Introduction
Material and methods
The Dall approach is a modified anterolateral approach with osteotomy of the anterior part of the greater trochanter. This approach relatively preserves the soft tissue tension during total hip arthroplasty (THA). We insert the stem and select a ball neck size so as to have a stable hip which will not dislocate easily during the trial reduction. The aim of this study is to evaluate the adequacy of this method, to measure leg length discrepancy and offset discrepancy at postoperative radiographs. We selected patients for inclusion in this study from those who have more than a 120 degree of affected hip flection angle, the opposite hip is almost normal with a low leg length discrepancy (primary OA, osteonecrosis, Crowe 1 secondary OA, femoral neck fracture). All THA were performed with cement fixation using an alignment guide to ensure accurate acetabular positioning. The ball head's diameter used were all 26mm. From September 2011 to October 2013, 22 patients met inclusion criteria among 103 THA. The mean age for 22 subjects was 66.6±12 years. The mean flexion angle of preoperative hip joints was 127.2±6.1 degrees. The cup inclination was 43.8° ± 3.5°. Anteversion was 11.8°±6°. The mean preoperative leg length discrepancy was 5.8mm±6.3mm. The mean postoperative leg length discrepancy was 0.7±3.5mm. The mean postoperative offset discrepancy was 0.7±6.6mm. There were no dislocations in this series of 103 cases. Discussion. Dislocation and leg length discrepancies are major complications following a total hip arthroplasty. A good range of motion of the preoperative hip joint is considered a high risk dislocation factor. The Dall approach with minimal release of soft tissue related to a tension of hip joint offers maximal stability and the ability to accurately restore leg length.
We occasionally came across cortical atrophy of femurs with cemented collarless polished triple-taper stem in a short term period. This study aimed to estimate radiographs of cemented collarless polished triple-taper stem taken 6 months after the initial operation. Between May 2009 and April 2011, 97 consecutive patients underwent primary total hip arthroplasty and hemiarthroplasty using SC-stem or C-stem implants. At the 6 month follow-up, a radiographic examination was performed on 70 patients (71 hips). 44 hips had Total Hip Arthoplasty, 35 had osteoarthritis, 5 had idiopathic osteonecrosis, 2 had other diseases and 27 hips had hemiarthroplasty for femoral neck fractures. The postoperative radiographs were used to estimate the cementing grade. Then the 6 month postoperative radiographs were analyzed for changes in stem subsidence, cortical atrophy and cortical hypertrophy. According to the system of Gruen- cortical atrophy and cortical hypertrophy were classified on the femoral side. We defined no cortical atrophy as grade 0, cortical atrophy less than 1 mm as grade 1, more than 1 mm and less than 2 mm as grade 2, more than 2 mm as grade 3.Background
Methods
Surgical site infection (SSI) is an infrequent but serious complication of total joint arthroplasty (TJA). Orthopaedic SSI causes substantial morbidity, prolonging the hospital stay by a median of 2 weeks, doubling the rates of rehospitalization, and more than tripling overall healthcare costs. Colonization with methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) is known to be associated with an increased risk of subsequent SSI. Carriers are two to nine times more likely to acquire S. aureus SSIs than non-carriers. Screening of the nose and throat for MRSA colonization and preoperative patient decolonization have been shown to decrease the incidence of subsequent MRSA infection. The aim of this study was to investigate the association between the results of MRSA colonization screening and the incidence of SSI in our hospital. Between June 2007 and June 2010, 238 patients were admitted for TJA, among whom 235 underwent preoperative assessment that included screening of the nose and throat for MRSA colonization. Fifty-nine of these patients underwent total hip arthroplasty (THA), 69 underwent total knee arthroplasty (TKA), 6 underwent unilateral knee arthroplasty (UKA), and 101 underwent bipolar hip prosthesis arthroplasty (BPH). The mean age of the patients was 72.7 (49–95) years and the male to female ratio was 1:3.8. We analyzed these patients retrospectively, and determined the site of colonization, eradication prior to surgery, and subsequent development of SSI in the year after surgery. SSI was defined according to the criteria established by the Centers for Disease Control and Prevention.Purpose
Materials and Methods