header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 154 - 154
1 Mar 2009
Dynybil C Schmidt C Backstroem M Schlichting K Duda G Perka C
Full Access

Introduction: Selective COX-2 (Cyclooxygenase-2) inhibitors have been found to impede fracture healing. The effect of selective COX-2 inhibitors on tendon healing in a bone tunnel, however, is unknown.

Methods: The authors performed bilateral anterior cruciate ligament reconstructions in 32 rabbits and used peripheral quantitative computed tomography (pQCT) to compare tendon-to-bone healing between tunnel aperture and midtunnel regarding bone mineral density (BMD) and ingrowth of new bone. Each animal was assigned to one of four groups. Two groups received selective COX-2 inhibitors orally for 3 weeks (Cele-coxib; 10 mg/kg/d), the two other groups received no COX-2 inhibitors (controls). The animals were sacrificed 3 and 6 weeks after surgery. In biomechanical testing maximum load to failure and stiffness of the tendon grafts were calculated from the load displacement curve and failure modes were recorded. To assess indirectly the effect on local COX-2 activity the synovial content of Prostaglandin E2 (PGE2), the major metabolite of arachnidonic acid metabolism and catalyzed by COX-2, was measured by Enzyme-linked Immunosorbent Assay (ELISA).

Results: Animals treated with selective COX-2 inhibitors had significantly lower BMD at the tunnel aperture (P=.02). In all groups the BMD at the tunnel aperture was significantly higher in comparison with the midtunnel (P< .05). In the controls ingrowth of new bone was greater at the tunnel aperture at 3 weeks (P=.028). After 3 weeks of COX-2 inhibitor administration synovial fluid concentrations of PGE2 were significantly lowered (P=.018) and increased more than threefold by 6 weeks after surgery and 3 weeks after last drug administration (P=.022), while in the controls there was a decrease in PGE2 between week 3 and 6. At 6 weeks the controls exhibited a twofold increase in maximum load to failure (3 weeeks: 28.2±20.9 N; 6 weeks: 59.6±53.6 N; P=.394), whereas the COX-2 inhibitor treated specimens decreased 1.9fold (3 weeks: 69.3±50.5 N; 6 weeks: 37.4±16.8 N; P=.24). Maximum load to failure values correlated with PGE2 changes, but not statistically significant (r2= −0,502; p=0,056). Failure modes at 3 and 6 weeks were rupture and degloving, respectively, of the tendon graft.

Discussion: This study revealed decreased bone mineral density at the tunnel aperture at 3 weeks, an increase of the inflammatory mediator PGE2 and decreased graft stability with time after treatment with selective COX-2 inhibitors. Untreated controls appeared to have a more physiological healing course with a continuous decrease in PGE2 and an increase in graft stability. Our results suggest, that selective COX-2 inhibitors may delay tendon healing in a bone tunnel.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 94 - 94
1 Mar 2006
Dynybil C Tobler M Schlichting K Schmidt C Perka C Weiler A
Full Access

Objectives: The replacement tissue used for anterior cruciate ligament reconstruction undergoes extensive biologic remodelling and incorporation after implantation. These changes, in which the tendon loses some of its characteristic features and adopts those typically associated with ligaments, has been referred to as ligamentization. The purpose of this study was to identify the proinflammatory response in the healing graft in the early phase.

Methodes: Twenty New Zealand White Rabbits underwent ACL reconstruction with a semitendinosus tendon. Animals were sacrificed at 3 and 6 weeks. The harvested tissue including parts of remaining grafted tendon and genuine anterior cruciate ligament at time of the surgery as well as the tendon graft withdrawn at sacrification were prepared for immunohistochemical, histomorphometry and electromicroscopical analysis; synovia samples were taken at the sacrification as well. The tissues were immunostained for IL-1beta, TGF-beta, TNF-alpha (induction of inflammatory cascade), COX-2 (mediator of inflammatory response), Matrix Metalloproteinases (MMP-1, MMP-3, MMP-13, matrix destructive enzymes), TIMP-2 (Tissue Inhibitor of MMPs); the PGE2 (mediator of inflammatory response) content in the synovia was quantified by ELISA.

Results: At 3 weeks after surgery the COX-2+ cells accounted for 70% of all cells present in the graft tissue, and decreased to 28% at 6 weeks. Similar, IL-1beta+ cells within the tendon decreased from week 3 to week 6. Controversly, there was an increase of COX-2, IL-1beta and MMP-1 in the intercellular tissue. The numbers of COX-2+ cells and IL-1beta+ cells at 3 weeks as well as the intercellular area stained positiv for COX-2, IL-1beta and MMP-1 at 6 weeks were significantly larger compared to the genuine ACL (p =< 0.05). At 3 weeks some cells stained positiv for MMP-3 and MMP-13, but not at 6 weeks. There was a slight pericellular staining for TIMP-2 at 3 weeks. TGF-beta+ cells and TNF-alpha+ cells were almost not detectable at every time point. Thus, proinflammatory cytokines and MMPs were synthesized in the early phase after ACL reconstruction by the tendon cells and accumulated at 6 weeks in the intercellular tissue.

Conclusions: In the early phase of the graft healing after ACL reconstruction, there was a signifikant increase in proinflammatory cytokines and matrix destructive enzymes in the tendon graft. With the capability of synthesizing cytokines, tendon cells may play a critical role in tendon healing at early time points. Facing the widespread use the bias of cox-2 inhibitors on these immunologic processes has to be checked. Activating matrix destructive enzymes, cytokines appear to be crucial for connective tissue remodelling and graft stability after ACL reconstruction.