Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Introduction: School screening for scoliosis aims to reduce the need for surgery by detecting curve changes in children at an early stage when bracing may be effective in halting the progression of the deformity. Although the effectiveness of the current screening techniques has not been established yet, AAOS and SRS continue to support school screening.. The major criticism focuses on the cost-ineffectiveness of the process, as too many students are unjustifiably referred to specialists. Moreover, examiner’s skills and experience are important factors in screening outcome. An ongoing, large-scale study of school screening is conducted in public schools at the northern part of Israel comparing the screening performance of a Scoliometer and a new, hand-held computerized device (SpineScan). SpineScan was designed to automatically measure the “angle of trunk inclination” (ATI), and is less dependent on examiner’s level of medical training. Furthermore, this tool enables also fast assessment of the kyphosis angle.
Methods: In a first phase of the study, 1000 children aged 10 to 14 years were screened. Each child underwent “blinded” examinations by two examiners with different skills (a pediatric orthopaedic surgeon and a physiotherapist), each of whom using a different tool (a Scoliometer and SpineScan, respectively). Screening was performed in examination positions specific for true scoliosis (standing and sitting forward bending) and ATI measurements were compared. Children with an ATI =or >
7º measured with either tool at both positions were referred to undergo a standard full spine X-ray in standing position, on which an experienced pediatric orthopaedic surgeon measured the Cobb angles. Curves = or >
10º were considered true positive findings for scoliosis. Statistical analysis included specificity, sensitivity and predictive value estimates of both methods.
Results: Referral rate for Scoliometer was 2.5% and for SpineScan 1.9%. SpineScan reached 80% sensitivity vs. 70% of the Scoliometer. Moreover, SpineScan achieved higher PPV values than the Scoliometer (80% vs. 54% respectively).
Discussion: These results imply that efficient and cost effective screening can be performed by minimally skilled examiner using SpineScan.