Isolated fractures of femoral condyle in the coronal plane (Hoffa fracture) is rare and is surgically challenging to treat. 44 patients were operated between 2004–2014. The aim was to retrospectively assess the fracture patterns, fixation done and functional outcome. All injuries resulted from direct trauma to the knee out of which 36 were due to road traffic accidents.38 were closed injuries and the rest open.35 involved lateral condyle, 8 involved medial condyle and one was bicondylar type. All were anatomically reduced with fixation decided based on preoperative radiographs, CT scan and intra-op observation. Early passive motion and isometric exercises were started but kept non-weight bearing for 6–8 weeks. The mean follow up period was five years. Outcomes were measured using Neer's scoring system and International Knee Society Documentation Committee (IKDC) Functional Score.Purpose
Methods
Articular cartilage has limited regenerative potential. Regeneration via autografts or cell therapy is clinically efficacious but the extent of regenerative success depends upon use of an appropriate cell source. The aim of this study was to compare the proliferative and chondrogenic potentials of three human cell types (human bone marrow stromal cells - HBMSCs, neonatal and adult chondrocytes) commonly used in cartilage tissue engineering. HBMSCs, neonatal and adult chondrocytes (passage 2) were cultured in basal and chondrogenic media. At 2, 4 and 6 days, the cells were analysed for morphology and doubling time. Alkaline phosphatase specific activity (ALPSA) was quantified for each group at 2, 4 and 6 weeks. Chondrogenic potential of each cell type was assessed via a pellet culture model. Cryosections were stained with Alcian blue/Sirius Red. HBMSCs showed either elongated or polymorphic phenotypes, with a doubling time of 40 h. Neonatal chondrocytes showed a uniform spindle shape and had the shortest doubling time (16 h). Adult chondrocytes, were also spindle shaped, though slightly larger than the neonatal cells, with a longer doubling time of 22 h. Expression of ALPSA in basal media was of the order HBMSCs >
adult chondrocytes >
, neonatal chondrocytes. In chondrogenic culture, this order changed to adult chondrocytes >
HBMSCs >
neonatal chondrocytes. In 3D pellet cultures, all three cell types stained positive for Alcian Blue and showed the presence of chondrocyte-like cells enclosed in lacunae. This comparative study suggests that neonatal chondrocytes are the most proliferative with lowest ALP expression. However, in terms of clinical applications, HBMSCs may be better for cartilage regeneration given their lower ALP expression under chondrogenic conditions when compared with adult chondrocytes under the same conditions. The study has provided information to inform clinical cell therapy for cartilage regeneration.