Robot-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to quantify soft tissue laxity and adjust the plan prior to bone resection should reduce variability in polyethylene thickness. This study was performed to compare accuracy to plan for component positioning and polyethylene thickness in RA-TKA versus M-TKA. 199 consecutive primary TKAs (96 C-TKA and 103 RA-TKA) performed by a single surgeon were reviewed. Full-length standing and knee radiographs were obtained pre and post-operatively. For M-TKA, measured resection technique was used. Planned coronal plane femoral and tibial component alignment, and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9mm. For RA-TKA, individual component position was adjusted to assist balance the gaps but planned coronal plane alignment for the femoral and tibial components and overall limb alignment had to remain 0+/− 3°; planned tibial posterior slope was 1.5°. Planned values and polyethylene thickness for RA-TKA were obtained from the final intra-operative plan. Mean deviations from plan for each parameter were compared between groups (ΔFemur, ΔTibia, ΔPS, and polyethylene thickness) as were distal femoral recut and tourniquet time.Introduction
Methods