Proximal hamstring tendon avulsion from the ischial tuberosity is a significant injury, with surgical repair shown to have superior functional outcomes compared to non-surgical treatment. However, limited data exists regarding the optimal rehabilitation regime following surgical repair. The aim of this study was to investigate patient outcomes following repair of proximal hamstring tendon avulsions between a conservative (CR) versus an accelerated rehabilitation (AR) regimen. This prospective randomized controlled trial (RCT) randomised 50 patients undergoing proximal hamstring tendon repair to either a braced, partial weight-bearing rehabilitation regime (CR=25) or an accelerated, unbraced regime, that permitted full weight-bearing as tolerated (AR=25). Patients were evaluated pre-operatively and at 3 and 6 months post-surgery, via patient-reported outcome measures (PROMs) including the Lower Extremity Functional Scale (LEFS), Perth Hamstring Assessment Tool (PHAT) and 12-item Short Form Health Survey (SF-12). Primary analysis was per protocol and based on linear mixed models. Both groups were matched at baseline with respect to patient characteristics. All PROMs improved (p>0.05) and, while the AR group reported a significantly better Physical Component Score for the SF-12 at 3 months (p=0.022), there were no other group differences. Peak isometric hamstrings strength and peak isokinetic quadriceps and hamstrings torque symmetry were all comparable between groups (p>0.05). Three re-injuries have been observed (CR=2, AR=1). After proximal hamstring repair surgery, post-operative outcomes following an accelerated rehabilitation regimen demonstrate comparable outcomes to a traditionally conservative rehabilitation pathway, albeit demonstrating better early physical health-related quality of life scores, without an increased incidence of early re-injury.
Traditionally, sports Injuries have been sub-optimally managed through Emergency Departments (ED) in the public health system due to a lack of adequate referral processes. Fractures are ruled out through plain radiographs followed by a reactive process involving patient initiated further follow up and investigation. Consequently, significant soft tissue and chondral injuries can go undiagnosed during periods in which early intervention can significantly affect natural progression. The purpose of this quality improvement project was to assess the efficacy of an innovative Sports Injury Pathway introduced to detect and treat significant soft tissue injuries. A Sports Injury Pathway was introduced at Fiona Stanley Hospital (WA, Australia) in April 2019 as a collaboration between the ED, Physiotherapy and Orthopaedic Departments. ED practitioners were advised to have a low threshold for referral, especially in the presence of a history of a twisting knee injury, shoulder dislocation or any suggestion of a hip tendon injury. All referrals were triaged by the Perth Sports Surgery Fellow with early follow-up in our Sports Trauma Clinics with additional investigations if required. A detailed database of all referrals was maintained, and relevant data was extracted for analysis over the first 3 years of this pathway. 570 patients were included in the final analysis. 54% of injuries occurred while playing sport, with AFL injuries constituting the most common contact-sports injury (13%). Advanced Scope Physiotherapists were the largest source of referrals (60%). A total of 460 MRI scans were eventually ordered comprising 81% of total referrals. Regarding Knee MRIs, 86% identified a significant structural injury with ACL injuries being the most common (33%) followed by isolated meniscal tears (16%) and multi-ligament knee injuries (11%). 95% of Shoulder MRI scans showed significant pathology. 39% of patients required surgical management, and of these 50% were performed within 3 months from injury. The Fiona Stanley Hospital Sports Injury Pathway has demonstrated its clear value in successfully diagnosing and treating an important cohort of patients who present to our Emergency Department. This low threshold/streamlined referral pathway has found that the vast majority of these patients suffer significant structural injuries that may have been otherwise missed, while providing referring practitioners and patients access to prompt imaging and high-quality Orthopaedic sports trauma services. We recommend the implementation of a similar Sports Injury Pathway at all secondary and tertiary Orthopaedic Centres.
Avulsion of the proximal hamstring tendon from the ischial tuberosity is an uncommon but significant injury. Recent literature has highlighted that functional results are superior with surgical repair over non-surgical treatment. Limited data exists regarding the optimal rehabilitation regime in post-operative patients. The aim of this study was to investigate the early interim patient outcomes following repair of proximal hamstring tendon avulsions between a traditionally conservative versus an accelerated rehabilitation regimen. In this prospective randomised controlled trial (RCT) 50 patients underwent proximal hamstring tendon avulsion repair, and were randomised to either a braced, partial weight-bearing (PWB) rehabilitation regime (CR = 25) or an accelerated, unbraced, immediate full weight-bearing (FWB) regime (AR group; n = 25). Patients were evaluated preoperatively and at 3 months after surgery, using the Lower Extremity Functional Scale (LEFS), Perth Hamstring Assessment Tool (PHAT), visual analog pain scale (VASP), Tegner score, and 12-item Short Survey Form (SF-12). Patients also filled in a diary questioning postoperative pain at rest from Day 2, until week 6 after surgery. Primary analysis was by per protocol and based on linear mixed models. Both groups, with respect to patient and characteristics were matched at baseline. Over three months, five complications were reported (AR = 3, CR = 2). At 3 months post-surgery, significant improvements (p<0.001) were observed in both groups for all outcomes except the SF-12 MCS (P = 0.623) and the Tegner (P = 0.119). There were no significant between-group differences from baseline to 3 months for any outcomes, except for the SF-12 PCS, which showed significant effects favouring the AR regime (effect size [ES], 0.76; 95% CI, 1.2-13.2; P = .02). Early outcomes in an accelerated rehabilitation regimen following surgical repair of proximal hamstring tendon avulsions, was comparable to a traditionally conservative rehabilitation pathway, and resulted in better physical health-related quality of life scores at 3 months post-surgery. Further long term follow up and functional assessment planned as part of this study.
The thrust plate prosthesis (TPP) is a femoral implant which stimulates physiological loading. This eliminates stress shielding, hence subsequent aseptic loosening of the femoral endo-prosthesis (Huggler/Jacob et al). Between December 1994 and December 1999, TPP (third generation prototype) were inserted in 63 hips in 58 patients between the ages of 19 and 75. This is a study and follow-up of one single surgeon. 46 hips in 41 patients were available for follow-up, clinical assessment (Harris Hip Score) and radiological evaluation (Buergi et al). The average hip score improved from a pre-operative score of 39 to 94 postoperatively. All patients achieved their occupational status post-operatively. Radiological evaluation assesses the cortical bone reaction in the mediocaudad zone of the femoral neck to the thrust plate. 36 hips (80%) maintained excellent osseous ingrowth between the mediocaudad femoral neck and the flat surface of the thrust plate (Type I reaction). There were 3 loosenings (technical error/poor selections), 1 deep infection, 2 stress fractures, 9 (20%) myositis ossificans, 1 broken screw and no dislocations. Implantation requires:
pre-operative templating, careful precision with the preferred 130° of neck femoral shaft angle firm osseous fixation Revision surgery, if required, is uncomplicated. It will be as for implanting a primary endo-prosthesis due to the preservation of excellent bone stock. The study shows promise of longevity and one hip arthroplasty for life, especially in young patients.