Infected periprosthetic fractures around total hip arthroplasties are increasingly common and extremely challenging problem. The purpose of the study was to review the experience of two tertiary referral units managing infected periprosthetic femoral fractures using interlocking long-stem femoral prostheses either as temporary functional spacers or as definitive implants. A prospective review of 19 patients managed at two tertiary referral units between 2000 and 2011. Each patient was diagnosed and managed according to similar institutional protocols. Investigation through aspiration and biopsy of periprosthetic tissue supplemented haematological tests to confirm infection. The Cannulock uncoated stem was used in 14 cases, and the Kent hip prosthesis in 5 cases. Allograft struts were used in patients with deficient bone stock. The mean follow-up for the series was a 53 months (range, 24–99 months). 13 patients underwent definitive revision within 7.9 months (range, 6–10 months; SD, 2.2 months). In 6 cases we implanted an extensively porous-coated stem, in 4 cases a tapered distally fixed cementless stem was used, and in 3 cases a proximal femoral replacement was used. There were no reinfections after the second stage revisions in these patients. 2 patients were offered further staged surgery due to persistently raised inflammatory markers but being mobile and relatively painfree declined. They are being managed in the community on oral antibiotics. Satisfactory outcome was noted in all cases, and in 13 cases, revision to a definitive stem was undertaken after successful control of infection and fracture union. The average postoperative Harris Hip score was 83 (range 79–89). All patients returned to their low to moderate premorbid functional state after discharge.Methods
Results
In recent years, there has been a significant advancement in our understanding of femoro-acetabular impingement and associated labral and chondral pathology. Surgeons worldwide have demonstrated the successful treatment of these lesions via arthroscopic and open techniques. The aim of this study is to validate a simple and reproducible classification system for acetabular chondral lesions. In our classification system, the acetabulum is first divided into 6 zones as described by Ilizalithurri VM et al [Arthroscopy 24(5) 534-539]. The cartilage is then graded as 0 to 4 as follows: Grade 0 – normal articular cartilage lesions; Grade 1 softening or wave sign; Grade 2 - cleavage lesion; Grade 3 - delamination and Grade 4 –exposed bone. The site of the lesion is further typed as A, B or C based on whether the lesion is 1/3 distance from acetabular rim to cotyloid fossa, 1/3 to 2/3 distance from acetabular rim to cotyloid fossa and > 2/3 distance from acetabular rim to cotyloid fossa. For validating the classification system, six surgeons reviewed 14 hip arthroscopy video clips. All surgeons were provided with written explanation of our classification system. Each surgeon then individually graded the cartilage lesion. A single observer then compared results for observer variability using kappa statistics.Introduction
Methods
For validating the classification system, six surgeons reviewed 14 hip arthroscopy video clips. All surgeons were provided with written explanation of our classification system. Each surgeon then individually graded the cartilage lesion. A single observer then compared results for observer variability using kappa statistics.
Univariate analysis established a significant relationship between the need for postoperative transfusion and preoperative Hb levels (p<
0.0001), length of surgery (p=0.01), age (p=0.03), history of respiratory disease (p=0.028) and hypertension (p=0.01). There was no significant relationship with respect to ASA grade and procedure type. Multivariate logistic regression analysis revealed pre-operative Hb (p<
0.0001) and age (p=0.015) as the strongest predictors of the need for post-operative transfusion. There is a strong correlation between length of surgery and time interval to transfusion (p=0.037).
Radiographic evaluation of the anterolateral femoral head is an essential tool for the assessment of cam type of femoroacetabular impingement. Computerised tomography (CT), magnetic resonance imaging and frog lateral plain radiograph views have all been suggested as imaging options for this type of lesion. Alpha angle is accepted as a reliable indicator of cam type of impingement and this may also be used as an assessment tool for successful operative correction of the cam lesion. The aim of our study was to analyse the reliability of frog lateral view plain radiographs to analyse the alpha angle in cam femoroacetabular impingement. Thirty two patients who presented with femoroac-etabular impingement were studied. Interobserver reliability for assessment of alpha angles on frog lateral radiographic view was analysed using intraclass correlation coefficient. The alpha angles measured on frog lateral views using digital templating tools were compared to those measured on CT scans. A high interobserver reliability was noted for the assessment of alpha angles on frog lateral views with a correlation coefficient of 0.83. The average alpha angles measured on frog lateral views was 58.71 degrees (range 32 to 83.3). The average alpha angle measured on CT was 65.11 degrees (range 30 to 102). However, a poor correlation (Spearman r of 0.2) was noted between the measurements using the two systems. Frog lateral plain radiographs are not reliable predictors of alpha angle. Various factors may be responsible for this such as the projection of the radiographs, patient positioning and quality of images. CT imaging may be necessary for accurate prediction of alpha angle.
The aim of our study was to determine the usefulness of preoperative digital templating of cementless total hip arthroplasty (THA). 60 consecutive cementless THA (synergy stem &
reflection cup) were templated digitally by two senior hip arthroplasty fellows (GM, YG) independently. A metallic marker ball of known diameter was used in all images to help scale for magnification. A blinded observer then collated information on the actual implant sizes, size of head component, offset, and level of neck cut intraoperatively. This was used to statistically analyse the correlation (Interclass correlation coefficient) between the digitally templated implant sizes and actual implant sizes used and the reliability of digital templating. A high rate of coincidence between digitally templated estimates and actual implant sizes was noted for both groups of templates. A high intraclass correlation coefficient (ICC) for the acetabular cup, stem and head were noted (ICC of 0.825, 0.794, and 0.884 respectively). Moderate agreement was noted for neck cut (ICC of 0.567) and leg length (ICC of 0.612). In conclusion, digital templating can reliably estimate implant sizes in cementless total hip arthroplasty. Valuable information on neck cut and leg length can be obtained by preoperative templating.
Theofilos Karachalios et al. described the new ‘Thessaly test’ and concluded that it could be safely used as a first line screening test for the selection of patients who need arthroscopic meniscal surgery (Ref: J Bone Joint Surg Am. 2005 May; 87(5):955–62). Our objective was to study the role of physical diagnostic tests in screening for meniscal tears and to validate the diagnostic accuracy of the Thessaly test.
McMurray’s test and the Thessaly test were assessed by an independent investigator blinded to any imaging data in all patients. MRI and subsequent arthroscopy results were then collated. Our study showed a much lower diagnostic accuracy for the Thessaly test (61.25 % for medial meniscus and 80 % for lateral meniscus) It is comparable to McMurray’s test (57.14 % for medial meniscus and 77.38 % for lateral meniscus). The Joint line tenderness test has a far superior diagnostic accuracy (80.95 %for medial meniscus and 90.48 % for lateral meniscus). Combining the joint line tenderness test with McMurrays test or the Thessaly test further increased the diagnostic accuracy. Magnetic resonance imaging (MRI) detected 96% of meniscal tears. Arthroscopy was diagnostic and therapeutic in all cases.
The aim of the study is to compare the postoperative pain relief provided by continuous perfusion of wound by bupivacaine and fentanyl with that of patient controlled analgesia using morphine in elective shoulder surgery. This retrospective case control study included 76 consecutive patients who had elective shoulder surgery. 39 patients had patient controlled analgesic system (PCA) with morphine and 37 patients had a continuous wound perfusion(intra bursal) with bupivacaine and fentanyl via a disposable Silicone Balloon Infuser. Patients were also given additional oral NSAIDs or morphine if needed. The pain score measured postoperatively based on a 10 point Visual Analogue Scale (VAS) at 1, 2, 3 and 18 hours was noted. The use of antiemetics and additional painkillers was recorded. The complications of both methods were also noted. We found that the analgesia provided by continuous perfusion of wound by bupivacaine and fentanyl was constant and comparable to that provided by the patient controlled analgesic system using morphine. PCA with morphine was associated with significantly high incidence of nausea and vomiting (p <
0.001).We conclude that continuous perfusion of the wound by bupivacaine and fentanyl appears to be a simple, effective and safe method of providing analgesia following elective shoulder surgery.
MRI scan for the knee joint has often been regarded to be the non invasive alternative to a diagnostic arthroscopy. MRI scan is routinely used to support the diagnosis for meniscal or ACL injuries prior to recommending arthroscopic examination and surgery. Identification of meniscal tears can be difficult to interpret and can be observer dependent as well as dependent upon the sensitivity of the scanner. Similar difficulties may exists in clinical examination as well. Our aim was to compare and correlate clinical, MRI and arthroscopic findings in the diagnosis of meniscal and Anterior Cruciate Ligament (ACL) Injuries. This was an observational study of 131 patients over 36 months who had both MRI and arthroscopic surgery. Our study showed clinical examination had better sensitivity (0.86 vs 0.76)and specificity(0.73 v/s 0.52) in comparing to MRI in diagnosis of medial menisceal injuries. similarly +predictive value and −predictive value were higher for clinical examination. whereas for lateral menisceal and ACL injuries there were marginal differences in sensitivity, specificity and predictive values We conclude that carefully performed clinically examination can give equally or better diagnosis of meniscal and ACL injuries in comparison to MRI scan. MRI scan may be used to rule out such injuries rather than to diagnose them. MRI scan has much better negative predictive value than positive predictive value in both meniscal and ACL injuries diagnosis. When clinical signs and symptoms are inconclusive, performing MRI scan is likely to be more beneficial in avoiding unnecessary arthroscopic surgery. When clinical diagnosis is in favour of either meniscal or ACL injuries, performing MRI scan prior to Arthroscopic examination is unlikely to be of significance. MRI scan should not be used as a primary diagnostic tool in meniscal and ACL injuries