Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 225 - 225
1 May 2009
Moreau M Hill D Lou E Mahood J Raso J
Full Access

Brace correction based upon mechanical action requires appropriate interface pressure between the body and the brace.

A smart orthotic was developed to record how much time (quantity) a brace was used, how well (quality) it was used and maintain the interface pressure to the prescribed level. Six subjects were recruited and they all used Boston style braces. Each subject used the system for two weeks without the force maintenance system activated to serve as the control period, and the remaining two weeks with the force maintenance system activated. During the automatic feedback mode, the pressure maintenance system was activated only during the daytime (8:00–22:00hrs) to avoid disturbing the patients during sleep. The subject could either return the system to us after one month or continue to use the system until the next clinic.

The time that the pressure level was in the target level range during the study period was increased from 53 +/− 9% to 68 +/− 14% with the feedback activated. The average brace wear time for the study period was 72 +/− 15% (12.6hr/day) of the prescribed time (17.5 +/− 3.8 hours). The curve severity of all subjects on the following clinical visit was the same (within measurement error) as the first visit (32 +/− 5 vs 31 +/− 5 degrees). Compliance was not affected when wearing the monitor.

The smart orthotic was able to improve the efficiency of a conventional brace by maintaining the prescribed interface pressure automatically. This proposed work helps brace candidates wear their braces more effectively and gets the most benefit from the brace treatment. As a result, all participated subjects maintained their Cobb angle within ± two degrees during the study period.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 225 - 225
1 May 2009
Mahood J Hedden D Hill D Lou E Moreau M Raso J
Full Access

To determine the pattern of brace wear compliance over time in both day and night time wear by using objective force measurements within the brace.

Twenty subjects who were diagnosed of AIS, age between nine and fifteen years, and new to brace treatment were recruited in this study. To use the data for analysis, only subjects who used the brace for five hours continuously either in daytime or nighttime were considered. For daytime wear, the selected five hour intervals had to begin with an initial spike in force after a period of non-activity as recorded by the transducer, which would indicate that they had just put on the brace. At night, the measurements began at one am and ended at six am.

Among the twenty subjects, only nine subjects’ data were used for daytime and eleven subjects’ data were used in nighttime. The average wear period was 11.4 ± 4.3 days for the day group, 11.6 ± 3.9 days for the night group. There was a statistically significant decrease in force within the first five hours of consecutive brace wear during daytime hours. The decrease was from 1.4 ± 0.6 (140% of prescribed force) in the first hour to 1.0 ± 0.6 in the fifth hour, a difference of 0.4, which is a 29% drop from the initial force. Most of the drop in force happened between hour one and hour two, as the difference in those two hours is 0.2 ± 0.1 (p = 0.001); between hours two and five the difference did not reach statistical significance. The observed difference between hours one and five for the night group was 0.2 ± 0.2, p = 0.06, which did not reach significance as well. Daytime forces in a Boston Brace tend to decrease over a period of time, but the nighttime forces seem to be maintained at the same level. These results show that daily adjustment of the brace tightness may be required to maintain the tightness level and the efficiency of brace treatment.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 40 - 41
1 Mar 2008
Rajwani T Bhargava R Lambert R Moreau M Mahood J Raso J Bagnall K
Full Access

Vertebral growth remains a mystery, especially with regards to the contribution of different growth plates and the mechanisms of growth after closure of these plates. As an example of vertebral growth in general, the growth of the vertebral canal was assessed in a rat model using fluorochromes. Although 80–90% of vertebral canal growth was due to growth plates, the remaining canal growth occurred via periosteal absorption and deposition. This is contrary to the traditional idea that periosteal mechanisms do not change the shape or dimensions of bone and suggests that the vertebrae exhibit a different model of growth than typical bones.

Vertebral growth remains largely a mystery. The contributions of different growth plates and the mechanisms of growth after closure of these plates requires further exploration. As an example of vertebral growth, vertebral canal growth was assessed in a living rat model using fluorochromes.

Vertebral canal growth and presumably vertebral growth in general occurred by different mechanisms at different phases of development. Growth plates accounted for the majority of growth although periosteal mechanisms also resulted in changes in the size and shape of the vertebrae. This is contrary to the traditional concept of periosteal growth and suggests that vertebrae may exhibit a different model of growth than typical bones.

The growth of the vertebrae in a particular dimension and during a particular phase of development is dependent on different mechanisms of growth, which may play a role in interpreting vertebral growth anomalies.

The interspinous junction closed by the end of the first week, whereas the neurocentral junction closed between weeks three and four. By four weeks, the vertebral canal had achieved 80–90% of its growth in area and diameter. After growth plate closure, the canal continued to grow by periosteal mechanisms and was displaced posteriorly.

Thirty-six Sprague-Dawley rats (age one week-seven weeks) were injected with tetracycline and alizarin using a dosing interval of four days. Thoracic vertebrae were sectioned using a cryostat and examined under a fluorescence microscope. In addition to noting fluoro-chrome deposition, the dimensions of the growth plates and canal were noted.

Funding: Edmonton Orthopaedic Research Association and University of Alberta Department of Radiology and Diagnostic Imaging


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 45 - 45
1 Mar 2008
Rajwani T Huang E Secretan C Bhargava R Lambert R Moreau M Mahood J Raso J Bagnall K
Full Access

This study was designed to examine the components of the MR image of the neurocentral junction (NCJ) and to explore the discrepancy between the age of closure of the NCJ as determined by anatomic and imaging studies. MR images of one hundred and fourteen porcine NCJs were correlated with anatomic and histologic sections. Whereas gross anatomic visualization did not reveal the NCJ site, MRI was sensitive for cartilage detection and accurately determined the age of NCJ closure although it overestimated the extent of closure. Based on this study, MRI characterization of the NCJ appears reliable and the NCJ cartilage does not close until adolescence.

This study examined the composition of the MR image of the neurocentral junction (NCJ) and the discrepancy between the age of closure of the NCJ as determined by anatomic and imaging studies.

MRI was sensitive for cartilage detection and accurately determined the age of NCJ closure (i.e. absence of cartilage on histologic examination).

MRI underestimated the extent of NCJ closure, with NCJs in the process of closure often presenting as completely open on MRI.

MRI and histologic characterization of the NCJ provided better description of closure patterns than anatomic examination.

Disparate NCJ development has been implicated as a potential cause of adolescent idiopathic scoliosis. Whereas autopsy studies have refuted this theory by suggesting that the NCJ closes before adolescence, MRI studies have resurrected this idea by suggesting later closure. MRI-histologic correlation suggests that the NCJ cartilage remains present until adolescence and therefore further exploration of the disparate growth hypothesis is required.

Gross anatomic visualization did not reveal the NCJ site, even after removal of the periosteum. In contrast, the presence or absence of an NCJ image correlated with the presence or absence of cartilage although MRI overestimated the extent of this cartilage.

Vertebrae were grossly examined for any evidence of the NCJ site. Sagittal and transverse MR images of one hundred and fourteen porcine NCJs in various stages of development (thirty-eight open, sixty-four closing, twelve closed) were correlated with anatomic and histologic sections acquired at the same position.

Funding: Edmonton Orthopaedic Research Association and University of Alberta Department of Radiology and Diagnostic Imaging


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 191 - 191
1 Mar 2003
Bagnall K Demianczuk D Wang X Moreau M Raso J Mahood J
Full Access

Introduction: No appropriate animal model for studying adolescent idiopathic scoliosis (AIS) exists and this hampers research. In recent years, we have been examining a model in which scoliosis consistently develops in young chickens following pinealectomy and which has been shown to have many characteristics similar to those seen in AIS. Not all of the pinealectomised chickens develop scoliosis following the pinealectomy and so we have the opportunity to examine differences between the two groups. The obvious candidate for study of the mechanism underlying this phenomenon is melatonin which is the principal product of the pineal gland. In this study we have measured the serum melatonin levels of pinealectomised chickens that have developed scoliosis and compared these with similar measurements taken from chickens that have developed scoliosis.

Methods and results: Newly-hatched chickens were obtained from a local hatchery and kept in a single pen with standard heating and lighting. A 12:12 light dark cycle was introduced immediately and the two-thirds of the chickens were pinealectomised three days later. The remainder acted as controls. At weekly intervals following surgery, the chickens were radiographed in a supine position while anaesthetised and the presence of scoliosis was determined from the radiographs. Three weeks after surgery the chickens were euthanised and blood samples were collected and analysed using radioimmunological techniques to determine levels of serum melatonin. The samples were collected in the presence of red light in the middle of the dark cycle when melatonin levels have been shown to be at their highest.

Approximately 55% of the pinealectomised chickens developed scoliosis within the three weeks following surgery whereas none of the control chickens developed scoliosis. The results showed that the serum melatonin levels of pinealectomised chickens were significantly lower than the normal controls and were in fact all close to zero. However, there was no significant difference in serum melatonin levels between those chickens that developed scoliosis and those that did not.

Conclusion: The results of this study have shown that pinealectomy significantly reduces serum melatonin levels close to zero in all chickens. The results also show that there is no significant difference in serum melatonin levels between those pinealectomised chickens that develop scoliosis and those that do not. Unless there is a subtle threshold level that is unable to be detected using our methodology or that melatonin levels in the days immediately after surgery are of critical importance, these results suggest that other causes for this phenomenon need to be examined. An understanding of the underlying cause would be of great importance and might represent a significant breakthrough in the study of AIS.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 190 - 190
1 Mar 2003
Bagnall K Rajwani T Bhargava R Moreau M Raso J Mahood J Elander A
Full Access

Introduction: Although there are several known causes of scoliosis, most are of unknown cause and develop during adolescence, making adolescent idiopathic scoliosis (AIS) the most common form. It has long been hypothesised that unilateral closure of the neurocentral junction accompanied by continued growth on the opposite side could lead to vertebral rotation and subsequent lateral curvature. However, autopsy studies of neurocentral junction closure in children has revealed that these joints close at approximately six years of age consequently excluding this hypothesis as a cause of AIS. In contrast, a recent MRI study has suggested that in some children at least, the NCJ does not close until much later in development around the time of puberty thereby resurrecting this hypothesis as a potential cause of AIS. This study was designed to investigate closure time and pattern of closure of the NCJ in normal patients to determine whether further examination of this hypothesis might be warranted.

Methods and results: The morphology of the NCJs in 20 patients between the ages of 3 and 15 were observed in MR images taken for purposes other than spinal anomaly. The structure of individual NCJs were observed and reconstructed in 3-dimensions. The age at which NCJs became closed was determined and pattern of closure of a typical NCJ was created using the reconstructed images. The pattern of closure of the NCJs along the vertebral column was also determined and any differences between right and left sides at the same level was also noted.

The results showed that there was a sequence of closure along the vertebral column for the NCJs with those in the cervical and lumbar regions being the first to close and those at the approximate level of T8 being the last to close. While the NCJs in the cervical and lumbar regions close at 5–6 years of age, those in the thoracic region, that are the last to close, do so at approximately 12 years of age. No significant difference between the stage of closure of the left and right sides was seen at any level.

Conclusion: The results of this study have shown that the closure of the NCJs in those vertebrae that form at approximately the most common level for the apical vertebra associated with AIS (midthoracic) does not occur until the time of puberty. This contrasts sharply with previously held views on the age of closure. Although no significant difference in closure between left and right sides was seen among these particular patients it does not exclude unilateral closure as a cause of AIS at least in some patients. These results suggest that examination of this hypothesis should be resurrected and that further study is well warranted. MR examination of young patients with small, initial curves could be well worthwhile.