We aim to objectively assess the impact of COVID-19 on mean total operative cases for all indicative procedures (as outlined by the Joint Committee on Surgical Training (JCST)) experienced by orthopaedic trainees in the deanery of the Republic of Ireland. Subjective experiences were reported for each trainee using questionnaires. During the first four weeks of the nationwide lockdown due to COVID-19, the objective impact of the pandemic on each trainee’s surgical caseload exposure was assessed using data from individual trainee logbook profiles in the deanery of the Republic of Ireland. Independent predictor variables included the trainee grade (ST 3 to 8), the individual trainee, the unit that the logbook was reported from, and the year in which the logbook was recorded. We used the analysis of variance (ANOVA) test to assess for any statistically significant predictor variables. The subjective experience of each trainee was captured using an electronic questionnaire.Aims
Methods
Patients with spinal cord injuries have been seen to have increased healing of attendant fractures. This for the main has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two groups with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (1 day, 5 days, 10 days, 42 days (6 weeks) and 84 days (12 weeks)). These samples were then analysed for levels of Transforming Growth Factor-Beta (TGF-ß) using the ELISA technique. This cytokine has been shown to stimulate bone formation after both topical and systemic administration. Results show TGF-ß levels of 142.79+/−29.51 ng/ml in the neurology group at 84 days post injury. This is higher than any of the other time points within this group (p<
0.001 vs day 1, day 5 and day 10 and p=0.005 vs 42 days, ANOVA univariate analysis). Furthermore, this level is also higher than the levels recorded in the non neurology (103.51+/−36.81 ng/ml) and long bone (102.28=/−47.58 ng/ml) groups at 84 days post injury (p=0.011 and p=0.021 respectively, ANOVA univariate analysis). There was statistically significant difference in TGF-ß levels seen between the clinically more severely injured patients, ie complete neurological deficit and the less severely injured patients, ie incomplete neurological deficit. In conclusion, the results of this work, carried out for the first time in humans, offers strong evidence of the causative role of TGF-ß in the increased bone turnover and attendant complications seen in patients with acute spinal cord injuries.
This basic science study attempts to explain why patients with spinal cord injuries have been seen to display increased healing of attendant fractures. For the main part, this has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two group with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (24hrs, 120hrs, 10 days, 6 weeks and 12 weeks). The time period most closely related to the end of the acute inflammatory reaction and the laying down of callus was the 10-day post injury time period. Serum samples taken at this time period were analysed for IGF-1 and TGF-ß levels, both known to initiate osteoblastic activity, using ELISA kits. They were also exposed to an osteoblast cell culture line and cell proliferation was measured. Results show that the group with neurology has increased levels of IGF-1 compared to the other groups (p<
0.14, p<
0.18 respectively, Student’s t-test) but had lower TGF-ß (p<
0.05, p<
0.006) and osteoblast proliferation levels (p<
0.002, p<
0.0001). When the neurology group is subdivided into complete (n=5) and incomplete (n=5), it was shown that the complete group had higher levels of both IGF-1 and TGF-ß. This trend is reversed in the osteoblast proliferation assay. This work, for the first time in human subjects, identifies a factor which may be regulating this complication of acute spinal cord injuries, namely IGF-1. Furthermore, the observed trend in the two cytokines seen in the complete neurology group may suggest a role for TGF-ß. However, the results do show that a direct mediation of this unwanted side effect of spinal cord injuries is unlikely as seen in the proliferation assay. Further work remains to be done to fully understand the complexities of the excessive bone growth recognised in this patient group.
Patients with spinal cord injuries have been seen to have increased healing of attendant fractures. This for the main has been a clinical observation with laboratory work confined to rats. While the benefits in relation to quicker fracture healing are obvious, this excessive bone growth (heterotopic ossification) also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two groups with spinal column fractures – those with neurological compromise (n=10) and those without (n=11), and compares them with a control group with isolated long bone fractures (n=10). Serum was taken from these patients at five specific time intervals post injury (24hrs, 120hrs, 10 days, 6 weeks and 12 weeks). The time period most closely related to the end of the acute inflammatory reaction and the laying down of callus was the 10-day post injury time period. Serum samples taken at this time period were analysed for IGF-1 and TGF-β levels, both known to initiate osteoblastic activity, using ELISA kits. They were also exposed to an osteoblast cell culture line and cell proliferation was measured. Results show that the group with neurology has increased levels of IGF-1 compared to the other groups (p<
0.14, p<
0.18 respectively, Student’s t-test) but had lower TGF- (p<
0.05, p<
0.006) and osteoblast proliferation levels (p<
0.002, p<
0.001), despite having a significantly higher cell proliferation than a control group (p<
0.0001). When the neurology group is subdivided into complete (n=5) and incomplete (n=5), it was shown that the complete group had higher levels of both IGF-1 and TGF-. This trend is reversed in the osteoblast proliferation assay. This work, for the first time in human subjects, identifies a factor which may be regulating this complication of acute spinal cord injuries, namely IGF-1. Furthermore, the observed trend in the two cytokines seen in the complete neurology group may suggest a role for TGF-β. However, the results do show that a direct mediation of this unwanted side effect of spinal cord injuries is unlikely as seen in the proliferation assay. Further work remains to be done to fully understand the complexities of the excessive bone growth recognised in this patient group.
Cervical orthoses are currently used in the pre-hospital stabilization of trauma patients and also as part of the definitive non-operative treatment of injuries of the cervical spine. The construct stability of orthoses is compromised by virtue of the fact that the cervical spine exhibits the greatest range of movement amongst the spinal segments and also because of the complex composite nature of neck movements. To date, data has been difficult to attain comparing the various orthoses, in the various planes of movement of the cervical spine. Various methods including the use of inclinometers, goniometers, radiography, computerized tomography and cineroentgenography have been used in an attempt to measure these movements but none have provided satisfactory triplanar data. This paper uses the Zebris ultrasonic 3-D motion analysis system to measure flexion, extension, range of lateral bending and range of axial rotation in five similar male and five similar female subjects with no history of neck injuries. The subjects were tested in a soft and hard collar, Philadelphia, Miami J and Minerva. Results show that the Minerva is significantly the most stable construct for restriction of movement in all planes in both groups (p<
0.002 vs. all groups, Student’s t-test), but more impressively in the female group. In the male group, the standard hard collar performs second best in flexion, lateral bending and axial rotation. In the female group, the second most stable orthosis is the Philadelphia in flexion/extension and the hard collar in lateral bending and axial rotation (p<
0.05 vs. next most stable in all cases, Student’s t-test). The soft collar in both groups offered only minimal resistance to movement in any plane, Looking at these results together allows the ranking of the measured orthoses in order of the three-dimensional stability they offer. Furthermore, they validate the Zebris as a reliable and safe method of measurement of the complex movements of the cervical spine with low intersubject variability. In conclusion, this paper, for the first time presents reproducible data incorporating the composite triplanar movements of the cervical spine thus allowing comparative analysis of the three-dimensional construct stability of the studied orthoses.