Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP pelvic radiographs in 22 patients with preoperative radiographs and 47 with post-operative radiographs treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in pelvic tilt angle was measured both by the Sacro-Femoral-Pubic (SFP) angle and the Pubic Symphysis to Sacro-iliac (PS-SI) Index. In the supine position, the mean calculated pelvic tilt angle (by SFP) was 1.05° which changed on standing to a pelvic tilt of 8.64°. A significant increase in posterior pelvic tilt angle from supine to standing of 7.59° (SFP angle) and 5.89° (PS –SI index) was calculated (p<0.001;paired t-test). There was a good correlation in pelvic tilt change between measurements using SFP angle and PS-SI index (rho .901 in pre-op group, rho .815 in post-op group). Signs of retroversion were significantly reduced in standing x-rays compared to supine: Crossover index (0.16 vs 0.38; p<0.001) crossover sign (19/28 vs 28/28 hips; p<0.001), ischial spine sign (10/28 hips vs 26/28 hips; p<0.001) and posterior wall sign (12/28 vs 24/28 hips; p<0.001). Posterior pelvic tilt increased from supine to standing in patients with symptomatic acetabular retroversion, in keeping with previous studies of pelvic tilt change in patients with hip dysplasia. The features of acetabular retroversion were much less evident on standing radiographs. The low pelvic tilt angle in the supine position is implicated in the appearance of acetabular retroversion in the supine position. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs so as not to miss signs of retroversion and to assist with optimising acetabular correction at the time of surgery.
Acetabular retroversion is a recognised cause of hip impingement. Pelvic tilt influences acetabular orientation and is known to change in different functional positions. While previously reported in patients with developmental dysplasia of the hip, positional changes in pelvic tilt have not been studied in patients with acetabular retroversion. We retrospectively analysed supine and standing AP pelvic radiographs in 22 patients with preoperative radiographs and 47 with post-operative radiographs treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in pelvic tilt angle was measured both by the Sacro-Femoral-Pubic (SFP) angle and the Pubic Symphysis to Sacro-iliac (PS-SI) Index. In the supine position, the mean calculated pelvic tilt angle (by SFP) was 1.05° which changed on standing to a pelvic tilt of 8.64°. A significant increase in posterior pelvic tilt angle from supine to standing of 7.59° (SFP angle) and 5.89° (PS –SI index) was calculated (p<0.001;paired t-test). The mean pelvic tilt change of 6.51° measured on post-operative Xrays was not significantly different (p=.650). There was a good correlation in pelvic tilt change between measurements using SFP angle and PS-SI index (rho .901 in pre-op group, rho .815 in post-op group). Signs of retroversion were significantly reduced in standing x-rays compared to supine: Crossover index (0.16 vs 0.38; p<0.001) crossover sign (19/28 vs 28/28 hips; p<0.001), ischial spine sign (10/28 hips vs 26/28 hips; p<0.001) and posterior wall sign (12/28 vs 24/28 hips; p<0.001). Posterior pelvic tilt increased from supine to standing in patients with symptomatic acetabular retroversion, in keeping with previous studies of pelvic tilt change in patients with hip dysplasia. The features of acetabular retroversion were much less evident on standing radiographs. The low pelvic tilt angle in the supine position is implicated in the appearance of acetabular retroversion in the supine position. Patients presenting with symptoms of hip impingement should be assessed by supine and standing pelvic radiographs so as not to miss signs of retroversion and to assist with optimising acetabular correction at the time of surgery.
Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the distal femur, tibial plateau and patella. The knee morphology of a study population (n=20), diagnosed with trochlear dysplasia and a history of recurrent patellar dislocation was compared to a gender- and age-matched control group (n=20). The arthro-CT scan-based 3D-models were isotropically scaled and landmark-based reference planes were created for quantification of the morphometry. Statistical analysis was performed to detect shape differences between the femur, tibia and patella as individual bone models (Mann-Whitney U test) and to detect differences in size agreement between femur and tibia (Pearson's correlation test). The size of the femur did not differ significantly between the two groups, but the maximum size difference (scaling factor) over all cases was 35%. Significant differences were observed in the trochlear dysplasia (TD) versus control group for all conventional parameters. Morphometrical measurements showed also significant differences in the three directions (anteroposterior (AP), mediolateral (ML), proximodistal (PD)) for the distal femur, tibia and patella. Correlation tests between the width of the distal femur and the tibial plateau revealed that TD knees show less agreement between femur and tibia than the control knees; this was observed for the overall width (TD: r=0.172; p=0.494 - control group: r=0.636; p=0.003) and the medial compartment (TD: r=0.164; p=0.516 - control group: r=0.679; p=0.001), but not for the lateral compartment (TD: r=0.512; p=0.029 - control: r=0.683; p=0.001). In both groups the intercondylar eminence width was strongly correlated with the notch width (TD: r=0.791; p=0.001 - control: r=0.643; p=0.002). The morphology of the trochleodysplastic knee differs significantly from the normal knee by means of an increased ratio of AP/ML width for both femur and tibia, a smaller femoral notch and a lack of correspondence in mediolateral width between the femur and tibia. More specifically, the medial femoral condyle shows no correlation with the medial tibial plateau.
In total hip arthroplasty (THA), a high radiographic inclination angle (RI) of the acetabular component has been linked to an increased dislocation rate, liner fracture, and increased wear. In contrast to version, we have more proven boundaries when it comes to a safe zone for angles of RI. Although intuitively it seems easier to achieve a target RI, most studies demonstrate a lack of accuracy and the trend towards a high RI with all surgical approaches when using a freehand technique or a mechanical guide. This is due to pelvic motion during surgery, which can be highly variable. The current study had two primary aims, each with a different primary outcome. The first aim was to determine how accurate a surgeon could obtain the target operative inclination (OI) during THA when using a cementless cup using a digital protractor. The second aim was to determine how accurate a surgeon can estimate the target OI to obtain a RI of 40° based on the patient's hip circumference as demonstrated in a previous study. In this prospective study, we included 200 consecutive patients undergoing uncemented primary THA in the lateral decubitus position using a posterior approach. Preoperatively, the surgeon determined the target OI based on the patient's hip circumference (22.5°, 25°, 27.5° or 30°). Intraoperatively, the effective OI was measured with the aid of a digital inclinometer after seating of the acetabular component. Six weeks postoperatively anteroposterior pelvic radiographs were made and two evaluators, blinded to the effective OI, measured the RI of the acetabular component. The safe zone for inclination was defined as 30°-45° of inclination.Introduction
Methods