The impact of a diaphyseal femoral deformity on knee alignment varies according to its severity and localization. The aims of this study were to determine a method of assessing the impact of diaphyseal femoral deformities on knee alignment for the varus knee, and to evaluate the reliability and the reproducibility of this method in a large cohort of osteoarthritic patients. All patients who underwent a knee arthroplasty from 2019 to 2021 were included. Exclusion criteria were genu valgus, flexion contracture (> 5°), previous femoral osteotomy or fracture, total hip arthroplasty, and femoral rotational disorder. A total of 205 patients met the inclusion criteria. The mean age was 62.2 years (SD 8.4). The mean BMI was 33.1 kg/m2 (SD 5.5). The radiological measurements were performed twice by two independent reviewers, and included hip knee ankle (HKA) angle, mechanical medial distal femoral angle (mMDFA), anatomical medial distal femoral angle (aMDFA), femoral neck shaft angle (NSA), femoral bowing angle (FBow), the distance between the knee centre and the top of the FBow (DK), and the angle representing the FBow impact on the knee (C’KS angle).Aims
Methods
Periprosthetic joint infection (PJI) remains the main cause of failure in primary and revision total knee arthroplasties (TKAs). Local delivery of antibiotics, mainly antibiotic-loaded bone cement (ALBC), is commonly employed to prevent PJI. Over the past decade, tantalum and porous titanium have been successfully utilized as metaphyseal fixation devices to address bone loss and improve biologic fixation during revision TKA. However, no study has examined the antimicrobial properties compared to bone cement. The purpose of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement (ALBC) and smooth titanium alloy (STA) to inhibit Staphylococci bacterial agents in an in vitro medium environment, based on the evaluation of the zone of inhibition (ZOI) and the antibacterial activity duration. Our study hypothesis was that we will found no significant difference between groups to inhibit Methicillin-Sensitive or Methicillin-Resistant Staphylococcus aureus (MSSA/MRSA) agents. Thirty beads made of 3 different materials (tantalum/ 3D porous titanium/ STA) were bathed during 1hour inside of a solution made of 1g vancomycin with 20-mL of sterile water for injection (bath concentration: 50 mg/mL). Ten 1cm3 cylinders were also created mixing standard surgical cement with 1g of Vancomycin in standardized sterile molds (ALBC beads). Finally, thirty beads made of tantalum/ 3D porous titanium/ STA were bathed in phosphate buffered saline solution to act as a control group. Cylinders were then placed on agar plates inoculated with MSSA and MRSA. Inhibition zone diameters were measured each day and cylinders were transferred onto a new inoculated plate. Inhibition zones were measured with a manual Vernier caliper and with automated software. The mean inhibition zones between groups were compared using the Wilcoxon Test.Introduction
Methods
Partial knee arthroplasty (PKA) has demonstrated the potential to improve patient satisfaction over total knee arthroplasty. It is however perceived as a more challenging procedure that requires precise adaptation to the complex mechanics of the knee. A recently developed PKA system aims to address these challenges by anatomical, compartment specific shapes and fine-tuned mechanical instrumentation. We investigated how closely this PKA system replicates the balance and kinematics of the intact knee. Eight post-mortem human knee specimens (age: 55±11 years, BMI: 23±5, 4 male, 4 female) underwent full leg CT scanning and comprehensive robotic (KUKA KR140 comp) assessments of tibiofemoral and patellofemoral kinematics. Specimens were tested in the intact state and after fixed bearing medial PKA. Implantations were performed by two experienced surgeons. Assessments included laxity testing (anterior-posterior: ±100 N, medial-lateral: ±100 N, internal-external: ±3 Nm, varus- valgus: ±12 Nm) under 2 compressive loads (44 N, 500 N) at 7 flexion angles and simulations of level walking, lunge and stair descent based on in-vivo loading profiles. Kinematics were tracked robotically and optically (OptiTrack) and represented by the femoral flexion facet center (FFC) motions. Similarity between intact and operated curves was expressed by the root mean square of deviations (RMSD) along the curves. Group data were summarized by average and standard deviation and compared using the paired Student's T-test (α = 0.05).Introduction
Materials and Methods
A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients) (figure 1). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured.Background
Methods
The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomicaloptions restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” (Figure 1) and “osteoarthritic knees” (Figure 2) that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research.
The mechanical alignment (MA) for Total Knee Arthroplasty (TKA) with neutral alignment goal has had good overall long-term outcomes. In spite of improvements in implant designs and surgical tools aiming for better accuracy and reproducibility of surgical technique, functional outcomes of MA TKA have remained insufficient. Therefore, alternative, more anatomical options restoring part (adjusted MA (aMA) and adjusted kinematic alignment (aKA) techniques) or the entire constitutional frontal deformity (unicompartment knee arthroplasty (UKA) and kinematic alignment (KA) techniques) have been developed, with promising results. The kinematic alignment for TKA is a new and attractive surgical technique enabling a patient specific treatment. The growing evidence of the kinematic alignment mid-term effectiveness, safety and potential short falls are discussed in this paper. The current review describes the rationale and the evidence behind different surgical options for knee replacement, including current concepts in alignment in TKA. We also introduce two new classification systems for “implant alignments options” and “osteoarthritic knees” that would help surgeons to select the best surgical option for each patient. This would also be valuable for comparison between techniques in future research.
A principle of Total Knee Arthroplasty (TKA) is to achieve a neutral standing coronal alignment of the limb (Hip Knee Ankle (HKA) angle) to reduce risks of implant loosening, reduce polyethylene wear, and optimise patella tracking. Several long-term studies have questioned this because the relationship between alignment and implant survivorship is weaker than previously reported. We hypothesize standing HKA poorly predicts implant failure because it does not predict dynamic HKA, dynamic adduction moment, and loading of the knee during gait. Therefore, the aim of our study is to assess the relationship between the standing (or static) and the dynamic (gait activity) HKAs. We performed a prospective study on a cohort of 35 patients (35 knees) who were treated with a posterior-stabilized TKA for primary osteoarthritis between November 2012 and January 2013. Three months after surgery each patient had a standardized digital full-leg coronal radiographs and was classified as neutrally aligned TKA (17 patients), varus aligned (9 patients), and valgus aligned (4 patients). Patients then performed a gait analysis for level walking and dynamic HKA and adduction moment during the stance phase of gait were measured. We found standing HKA having a moderate correlation with the peak dynamic varus (r=0.318, p=0.001) and the mean and peak adduction moments (r=0.31 and r=-0.352 respectively). In contrast we did not find a significant correlation between standing HKA and the mean dynamic coronal alignment (r=0.14, p=0.449). No significant differences were found for dynamic frontal parameters (dynamic HKA and adduction moment) between patients defined as neutrally aligned or varus aligned. In our practice, the standing HKA after TKA was of little value to predict dynamic behaviour of the limb during gait. These results may explain why standing coronal alignment after TKA may have limited influence on long term implant fixation and wear.
Treatment of osteoarthritis of the knee remains a challenging problem since the evolution of the disease may be different in each compartment of the knee, as well as the state of the ligaments. Total knee arthroplasty may provide a reliable long-lasting option but do not preserve the bone stock. In another hand, compartmental arthroplasty is a bone and ligament sparing solution to manage limited osteoarthritis of the knee affecting the medial, lateral or the patello-femoral compartment.1, 2, 3 Patient's selection and surgical indication are based on the physical examination and on the radiological analysis including full-length x-rays and stress x-rays. Clinical experience has shown the need for high flexion in patients who have both high flexibility and a desire to perform deep flexion. Additionally the shape differences related to anatomy or the patient expectations after the surgery may also affect the surgeon decision. 4 The limited incision into the extensor mechanism allows a quicker recovery which represents a functional improvement for the patient additionally to the cosmetic result. A dedicated physiotherapy starting on the following day allowing weight bearing exercises protected by crutches and focusing on early mobilization and range of motion combined to a multimodal pain management approach is critical despite the type of individualized solution chosen for the patient knee. 5 Since bony landmarks may be different form a patient to another one as well as anatomical shapes, several tools have been developed in order to provide the surgeons an assisted tool during the surgery adapted to each knee, this include navigation, patient specific instrumentation and robotic surgery.
Whether to resurface the patella during a primary Total Knee Replacement (TKR) performed as a treatment of degenerative osteoarthritis remain a controversial issue. Patellar resurfacing was introduced because early implants were not designed to accommodate the native patella in an anatomic fashion during the range of motion. Complications related to patella resurfacing became a primary concern and have been associated with the variable revision rates often report post TKR. Subsequent modifications in implant design have been made to offer the surgeon option of leaving the patella un-resurfaced. Numerous clinical trials have been done to determine the superiority of each option. Unfortunately, there is little consensus and surgeon preference remains the primary variable. One of the major reasons given to support patella resurfacing is to eliminate Anterior Knee Pain post operatively. However, studies have shown that this problem was not exclusively found in non-resurfaced patients so the author conclude that anterior knee pain is probably related to component design or to the details of the surgical technique, such as component rotation rather that whether or not the patella is resurfaced. An increasing rate of complications with the extensor mechanism after patellar resurfacing led to the concept of selective resurfacing of the patella in TKR. Decision making algorithms with basis of clinical, radiographic and intraoperative parameters have been developed to determine which patients are suitable for patella resurfacing and which are suitable for patella non-resurfacing. Finally, the continued study of this topic with longer follow up term in randomized, controlled, clinical trials remains essential in our understanding of patella in TKR. The development of joint registry will allow surgeons to draw conclusions on the basis of larger numbers of patients and will improve the reporting of the results of patellar non resurfacing in clinical trials. In general, surgeons in United States always resurface while their counterparts in Europe tend to never resurface.
Improving the adaptation between the implant and the patient bone during total hip arthroplasty (THA) may improve the survival of the implant. This requires a perfect understanding of the tridimensional characteristics of the patient hip. The perfect evaluation of the tridimensional anatomy of the patient hip can be done pre-operatively using X-rays and CT-scan. All patients underwent a standard x-rays evaluation in the same center according to the same protocol. Pre-operatively, the frontal analysis of the hip geometry was performed and the optimal center of rotation, CCD angle, neck length and lever arm was analyzed to choose the optimal solution for proper balance of the hip in order to obtain adequate range of motion, appropriate leg length, and correct tension of the abductors muscles. Standard or lateralized monoblock stems can be valid or modular neck shape can be choosen among 9 available shape. These 9 frontal shapes are available in standard, anteverted or retroverted shapes, leading to 27 potential neck combinations. In case of important hip deformation, a custom implant can be used in order to balance the extra-medullar geometry without compromising the intra-medullary adaptation of the stem. We prospectively included 209 hips treated in our institution with total hip arthroplasty performed using a supine Watson-Jones approach and the same anatomic stem. The mean patient age was 68 years and the mean BMI 26 Kg/m². Intra-operatively the sagittal anatomy of the hip was analyzed and standard, ante or retro modular necks were tested for the frontal shape defined pre-operatively. According to the pre-operative frontal planning, non-standard necks were required in 24 % of the cases to restore the anatomy of the hip. Intra-operatively, a sagittal correction using anteverted neck was required in 5% of the cases and retroverted necks in 18% of the cases. Harris hip score improved from 56 to 95 points at min. 5 year follow-up. No leg length discrepancy greater than 1 cm was observed. Restoration of the lever arm (mean 39.3 mm, range 30 to 49 mm) and of the neck length (55.2, range 43 to 68 mm) was adapted for 95% compared to the non operate opposite side. Disturbed anatomy like in DDH or post-traumatic cases may require additional solutions to balance the hip such combined osteotomy or customized stem and neck.
Partial knee arthroplasty (PKA), either medial
or lateral unicompartmental knee artroplasty (UKA) or patellofemoral arthroplasty
(PFA) are a good option in suitable patients and have the advantages
of reduced operative trauma, preservation of both cruciate ligaments
and bone stock, and restoration of normal kinematics within the
knee joint. However, questions remain concerning long-term survival.
The goal of this review article was to present the long-term results
of medial and lateral UKA, PFA and combined compartmental arthroplasty
for multicompartmental disease. Medium- and long-term studies suggest
reasonable outcomes at ten years with survival greater than 95% in
UKA performed for medial osteoarthritis or osteonecrosis, and similarly
for lateral Cite this article:
Recent studies have concluded that gender influences hip morphology at the time of surgery as well as dysplastic development of the hip. This may lead to a particular choice of implant including stem design and/or neck modularity. In this study we hypothesized that not only gender but also morphotype and etiology (primary osteoarthritis versus aseptic osteonecrosis) may be a significant factor to predict the anatomy of the hip at the time of total hip arthroplasty (THA). We reviewed 690 patients undergoing THA for primary arthritis (OA) or avascular osteonecrosis (AVN) between April 2000 and June 2005 and stratified each into three groups based on their anatomic constitution: endomorph (EN), ectomorph (ECT), or mesomorph (ME) (determined by the ratio: pelvic width/total leg length measured on full-length X-rays). Two independent observers measured twice four parameters on preoperative CT scan: neck-shaft-angle angle (NSA), femoral offset value (FO), helitorsion (Ht) value and femoral neck anteversion (Av).Introduction:
Methods:
Previous fluoroscopic studies compared total knee arthroplasty (TKA) kinematics to normal knees. It was our hypothesis that comparing TKA directly to its non-replaced controlateral knee may provide more realistic kinematics information. Using fluoroscopic analysis, we aimed to compare knee flexion angles, femoral roll-back, patellar tracking and internal and external rotation of the tibia. 15 patients (12 women and 3 men) with a mean age of 71.8 years (SD=7.4) operated by the same surgeon were included in this fluoroscopic study. For each patient at a minimum one year after mobile-bearing TKA, kinematics of the TKA was compared to the controlateral knee during three standardized activities: weight-bearing deep-knee bend, stair climbing and walking. A history of trauma, pain, instability or infection on the non-replaced knee was an exclusion criteria. A CT-scan of the non-replaced knee was performed for each patient to obtain a 3-D model of the knee. The Knee Osteoarthitis Outcome Score (KOOS) was also recorded.Introduction
Material and methods
It is documented in the literature the very good results of lateral unicompartmental knee arthroplasty (UKA) when the standard accepted indications are followed. In our experience these indications can be extended to include post-traumatic osteoarthritis (OA) with malunion secondary to tibial plateau fracture. We report our results concerning 15 UKAs in these particular situations. From 1985 to 2009, we performed 15 lateral UKAs in 15 patients for post traumatic OA secondary to malunion following a tibial plateau fracture. 7 were female and 8 male. The mean age of the patients at the time of the index procedure was 45±17 years and the mean delay from initial trauma was 5.4 years. The average follow-up was 108 months (range 12–265 months).Introduction
Material and methods
Treatment of limited osteoarthritis of the knee remains a challenging problem. Total knee arthroplasty may provide a reliable long-lasting option but do not preserve the bone stock. In another hand, compartmental arthroplasty with or without osteotomy is a bone and ligament sparing solution to manage limited osteoarthritis of the knee. Considering the renewed interest for combined compartmental implants we aimed to evaluate the average 12-year clinical and radiological outcome of a consecutive series of patients treated with compartmental knee arthroplasty combined or not with osteotomy. We retrospectively reviewed all 255 patients (274 knees) treated in our institution with a compartmental arthroplasty combined or not with an osteotomy for a diagnosis of either bi or tricompartmental osteoarthritis of the knee between April 1972 and December 2000. The series included: 100 cases of combined lateral and medial UKA, 77 combined medial UKA and patello-femoral arthroplasty (PFA), 19 cases of combined Bi-UKA and PFA, 14 cases of UKA and high tibial osteotomy (HTO), 7 cases of combined lateral-UKA and PFA and HTO, 16 cases of combined lateral-UKA and PFA and 13 cases of combined bi-UKA and HTO. Patient’s selection and surgical indication was based on the physical exam and on the radiological analysis including full-length x-rays and stress x-rays. Clinical and radiological evaluations were performed at a minimum follow-up of 5 years (mean, 12 years; range, 5–23 years) by an independent observer. The Knee Society knee and function scores improved respectively from 43 to 89 and from 47 to 90 at last-follow-up. The mean active knee flexion improved from 116° ± 6° (range, 100°–145°) pre-operatively to 129° ± 5° (range, 117°–149°) at final follow-up. The restoration of the mechanical axis of the knee was achieved in all the cases. Dramatic failures were observed for patient with uncemented PFA. Considering revision for any reason as the endpoint, the 17-years survivorship was 0.68 (95% confidence interval: 0.62 to 0.75). Our results suggested that combined compartmental arthroplasty with or without osteotomy can restore function and alignment of the knee in compartmental arthritis. This combined surgery represents a bone and ligament sparing alternative to TKA which can be considerate as a true minimally invasive solution.
Most of computer-assisted computer assisted system rely on the peri-operative acquisition of the anterior pelvic plane defined as the plane crossing the two anterior iliac spine and the symphysis. The goal of this study was to evaluate in vivo and in vitro the accuracy of the anterior pelvic plane acquisition, considered as the reference for computer-assisted total hip arthroplasty (THA). Cup placement was performed using an imageless computer-assisted system in thirty patients during THA. Post-operatively the position of the cup was evaluated on computed tomography using a validated tridimensional software. The differences between the perioperative and postoperative angles for abduction and anteversion were compared using a two-group pair test. On two cadavers four clinicians performed ten times the anterior pelvic plane acquisition using three Methods: percutaneously, with ultrasound and by direct bony acquisition defined as the reference. The mean error for each anterior pelvic plane acquisition method was compared using a univariate variance model for repeated measurements. In vivo, the mean difference between the perioperative and postoperative abduction angles was 4° and not statistically significant. For anteversion, the difference was 4° and not significant in patients with BMI <
27. The difference was 11° and significant in patients with BMI >
27 (p<
0.001). In vitro, the mean errors for rotation and tilt were respectively 3.8 ° and 19.25 ° for cutaneous acquisition, 2.8° and 6.2° for ultrasound acquisition method. The errors were statistically higher with the percutaneous method (p<
0.001). According to our results, the accuracy of the standard percutaneous acquisition method of the anterior pelvic plane in computer-assisted THA is limited. The ultrasound acquisition method may represent a reliable alternative.
Improving the adaptation between the implant and the patient bone during total hip arthroplasty (THA) may improve the survival of the implant. This requires a perfect understanding of the tridimensional characteristics of the patient hip. The perfect evaluation of the tridimensional anatomy of the patient hip can be done pre-operatively using CT-scan and in case of important hip deformation, a custom implant can be used. When this solution is not available, modular necks may be a reliable alternative using standard x-rays and intraoperative adaptation. We aimed to evaluate:
The usefulness of modular neck to restore the anatomy of the hip and the short-term clinical and radiological results of a consecutive series of THA using modular neck. We prospectively included 209 hips treated in our institution with a modular neck total hip arthroplasty between January 2006 and December 2007. All patients underwent a standard xrays evaluation in the same center according to the same protocol. Pre-operatively, the frontal analysis of the hip geometry was performed and the optimal center of rotation, CCD angle, neck length and lever arm was analyzed to choose the optimal modular neck shape among 9 available shape. These 9 frontal shapes are available in standard, anteverted or retroverted shapes, leading to 27 potential neck combinations. The mean patient age was 68 years and the mean BMI 26 Kg/m2 All the procedures were performed supine using a Watson-Jones approach and the same anatomic stem. Intra-operatively the sagittal anatomy of the hip was analyzed and a standard, ante or retro modular necks were tested for the frontal shape defined pre-operatively. According to the pre-operative frontal planning, nonstandard necks were required in 24 % of the cases to restore the anatomy of the hip. Intra-operatively, a sagittal correction using anteverted neck was required in 5% of the cases and retroverted necks in 18% of the cases. Harris hip score improved from 56 to 95 points at last follow-up. No leg length discrepancy greater than 1 cm was observed. Restoration of the lever arm (mean 39.3 mm, range 30 to 49 mm) and of the neck length (55.2, range 43 to 68 mm) was adapted for 95% compared to the non operate opposite side. No loosening was observed. According to our results modular neck combined are useful and reliable to restore optimal hip geometry and in this series 25% of the patient would have had imperfect extra-medullary hip geometry with a standard prosthesis. The good clinical and radiological short-term results should be confirmed at longer follow-up.