Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.Aims
Methods
Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1]. In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state. The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment. Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium). The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane. The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).Introduction
Methods
The indication of unicompartmental knee arthroplasty (UKA) for end-stage osteoarthritis (OA) remains controversial. This study aimed to investigate patient reported outcomes (PROs) of UKA in patients with severe varus deformity of the knee and compare the results with those of total knee arthroplasty (TKA) at mid-term follow up. A total of 96 TKAs of 69 patients and 61 UKAs of 50 patients were included. All patients presented with severe knee OA with hip-knee-ankle angle (HKA) ranged from −25 degree to −10 degree, preoperatively. Mean HKAs in TKA group and UKA group were −14.95º and −13.38º, respectively. PROs were assessed using Knee Society Score (KSS 2011), PainDETECT score (PD), and Pain Catastrophizing Scale (PCS) at a mean follow up of 58.65 months for TKA and 58.05 months for UKA. Kaplan-Meier survival analysis was performed to assess implant survival. Complication rate was also assessed. All data were compared between TKA group and UKA group.Background
Methods
Reproducing a functional flexion-extension axis (FEA) of the femur is key to achieving successful collateral ligament balance and joint line in total knee arthroplasty (TKA). This study assessed the feasibility of cylindrical axis (CA)-reference bone-cut and articular surface-reference bone-cut to reproduce FEA in Japanese osteoarthritis patients. The study enrolled 122 knees from 86 patients who underwent primary TKA due to grade III or IV osteoarthritis. Data from preoperative CT were reconstructed into 3-dimensional (3D) models using 3D-planning software. Cylindrical radii of the condyles were measured, and femoral bone-cut angles relative to anatomical landmarks were determined in the coronal and axial reference planes based on CA-reference and articular surface-reference methods.Purpose
Methods
Wound condition after primary total knee arthroplasty (TKA) is important for prevention of periprosthetic infection. Any delay in wound healing will cause deep infection, which leads to the arthroplasty failure. Prevention of soft tissue problems is thus essential to achieve excellent clinical results. However, it is unknown as to the important surgical factors affecting the wound healing using detailed wound score after primary TKA so far. It was hypothesized that operative technique would affect wound healing in primary TKA. The purpose of the present study was to investigate and to clarify the important surgical factors affecting wound score after primary TKA. A total of 139 knees in 128 patients (mean 73 years) were enrolled. All primary TKAs were done by single surgeon. All patients underwent unilateral or bilateral TKA using Balanced Knee System®, posterior stabilized (PS) design (Ortho Development, Draper, UT) or Legion®, PS design (Smith and Nephew, Memphis, TN) under general and/or epidural anesthesia. Patients with immunosuppressive therapy, hypokalemia, poor nutrition (albumin < 3.4 g/dL), diverticulosis, infection elsewhere, uncontrolled diabetes mellitus (HbA1C>7.0%), obesity (Body Mass Index > 35 kg/m2), smoking, renal failure, hypothyroidism, alcohol abuse, rheumatoid arthritis, posttraumatic arthritis, and previous knee surgery were excluded. Hollander Wound Evaluation Score (HWES) was assessed on postoperative day 14. We evaluated age, sex, body mass index, HbA1C (%), preoperative femorotibial angle (FTA) on plain radiograph. In addition, intraoperative patella eversion, intraoperative anterior translation of the tibia, patella resurfacing, surgical time, tourniquet time, unidirectional barbed suture and length of skin incision were also evaluated as surgical factors. Multiple regression analysis was done using stepwise method to identify the surgical factors affecting HWES.Introduction
Methods
Kinematically or anatomically aligned total knee arthroplasty (TKA) has been reported to provide improved clinical outcomes by replicating patient's original joint line [1][2]. It has been known that tibial (joint line) varus varies among patients, and the tibial varus would increase over progression of arthritis and bone remodeling. For those patients with significant deformity, the current tibial varus may significantly differ from its pre-diseased state. In this exploratory study, geometry and alignment of the tibial growth plate were measured with respect to tibial anatomical landmarks in order to better understand modes of tibial deformity and seek possible application in reconstructing pre-diseased joint alignment. CT scans of sixteen healthy Japanese knees (M6:F10, Age 31.9±13.9 years) were studied. Three-dimensional reconstruction models were created using Mimics 17 (Materialise, Leuven, Belgium). First, a mid-sagittal tibial reference plane, for comparing the varus/valgus orientation of the tibial plateau to that of the growth plate, was defined by the medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined from three points; dwell point of femur (aligned in extension) on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface sampled in the sagittal view and coinciding with dwell point of femur on medial tibia. Then, a three-dimensional model of the tibial growth plate was extracted using the Livewire function and mask editing tools in Mimics. To determine 3D orientation of the growth plate (GP), the vertical mass moment of inertia axis was calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).Introduction
Methods
A longer operative time will lead to the development of any postoperative complications in total knee arthroplasty (TKA). According to previous reports, a significant increase in TKA procedure time done by novice surgeons was observed compared to high-volume surgeons. Our purpose was to investigate and to clarify the important maneuver necessary for novice surgeons to minimize a surgical time in TKA. A total of 300 knees in 248 patients, averaged 74.6 ± 8.7 years, were enrolled. All primary TKAs were done using same instruments (Balanced Knee System®, PS design, Ortho Development, Draper, UT) and same measured resection technique at 14 facilities by 25 orthopedic surgeons. Surgeons were divided into three surgeon groups (4 experts, 9 medium volume surgeons, 12 novices). All methods were approved by our institution's ethics committee. We divided the operative technique into 5 steps to make comparisons of step-by-step surgical time among surgeon groups of different levels. We defined Phase 1 as performing surgical exposure from skin incision to insertion of the intramedullary rod into the femur. Thereafter, the distal and AP surface of the femur, proximal tibia, the chamfer and PS box of the femur, and patella were resected in Phase 2. In Phase 3, a setup the trial component and a keel of the tibia were done after a confirmation of appropriate ligament balance using the spacer block. Then, a bone surface was irrigated with 2000ml of saline after the removal of the trial component. Subsequently, permanent components were fixed with use of bone cement in Phase 4. Finally, the final irrigation using 2000ml saline and wound closure were done in Phase 5. Every phase of the surgical time was recorded in each TKA. As a statistical analysis, operation data including length of skin incision, component size, operation time in each phase, and ratio of surgical time in each phase to whole surgical time, were compared using non-repeated measures of ANOVA and a post hoc Bonferroni correction. The threshold for statistical significance was set at a p value of less than 0.05.Introduction
Methods
A large number of total knee arthroplasty (TKA) patients, particularly in Japan, India and the Middle East, exhibit anatomy with substantial proximal tibial torsion. Alignment of the tibial components with the standard anterior-posterior (A-P) axis of the tibia can result in excessive external rotation of the tibial components with respect to femoral component alignment. This in turn influences patellofemoral (PF) mechanics and forces required by the extensor mechanism. The purpose of the current study was to determine if a rotating-platform (RP) TKA design with an anatomic patellar component reduced compromise to the patellar tendon, quadriceps muscles and PF mechanics when compared to a fixed-bearing (FB) design with a standard dome-shaped patellar component. A dynamic three-dimensional finite element model of the knee joint was developed and used to simulate a deep knee bend in a patient with excessive external tibial torsion (Figure 1). Detailed description of the model has been previously published [1]. The model included femur, tibia and patellar bones, TKA components, patellar ligament, quadriceps muscles, PF ligaments, and nine primary ligaments spanning the TF joint. The model was virtually implanted with two contemporary TKA designs; a FB design with domed patella, and a RP design with anatomic patella. The FB design was implanted in two different alignment conditions; alignment to the tibial A-P axis, and optimal alignment for bone coverage. Four different loading conditions (varying internal-external (I-E) torque and A-P force) were applied to the model to simulate physiological loads during a deep knee bend. Quadriceps muscle force, patellar tendon force, and PF and TF joint forces were compared between designs.Introduction
Methods
Although proximal tibia vara is physiologically and pathologically observed, it is difficult to measure the varus angle accurately and reproducibly due to inaccuracy of the radiograph because of rotational and/or torsional deformities. Since tibial coronal alignment in TKA gives influence on implant longevity, intra- or extra-medurally cutting guide should be set carefully especially in cases with severe tibia vara. In this context, we measured the proximal tibial varus angle by introducing 3D-coordinate system. Three-dimensional models of 32 tibiae (23 females, 9 males, 71.2 ± 7.8 y/o) were reconstructed from CT data of the patients undergoing CT-based navigation assisted TKA. Clinically relevant mid-sagittal plane is defined by proximal tibial antero-posterior axis and an apex of the tibial plafond. After the cross-sectional contours of the tibial canal were extracted, least-square lines were fitted to define the proximal diaphyseal and the metaphyseal anatomical axis. The proximal tibia vara was firstly investigated in terms of distribution of proximal anatomical axis exits at the joint surface. TVA1 and TVA2 were defined to be a project angle on the coronal plane between the metaphyseal tibial anatomical axis and the proximal diaphyseal anatomical axis, and that between the metaphyseal tibial anatomical axis and the tibial functional axis, respectively. The correlations of each angle with age and femoro-tibial angle (FTA) were also examined. The proximal anatomical axis exits distributed 4.3 ± 1.7 mm medially and 17.1 ± 3.4 mm anteriorly. TVA1 and TVA2 were 12.5 ± 4.5°(4.4?23.0°) and 11.8 ± 4.4° (4.4?22.0°), respectively. The correlations of FTA with TVA1 (r=0.374, p<0.05) and TVA2 (r=0.439, p<0.05) were statistically significant.Materials & Methods
Results
Bi-cruciate substituting total knee arthroplasty (TKA) having two post-cam mechanisms was developed to substitute for cruciate ligament function after surgery. A previous study has shown many of these knees achieve high functional flexion. However, there is little information provided to differentiate between knees able to flex deeply and those that could not, although this is a major concern for surgeons. This study was conducted to compare the kinematic pathway from 0° to 90° in both groups. Twenty five knees were included in this study. All knees were diagnosed with osteoarthritis (OA) and all TKAs were performed by the same surgeon (WR) from November 2005 to September 2006. A mini mid-vastus surgical approach with posterior cruciate ligament (PCL) resection and patellar resurfacing was used in all cases. Computer navigation was used to guide bone cuts in all the cases. Patients' age averaged 63 years (range, 43–73) at the time of surgery. The study observations were performed at an average of 53 (SD 4) months after surgery. Knee motions were recorded using video-fluoroscopy while subjects performed stair up and down, and lunge activities. The three-dimensional position and orientation of the implant components were determined using model-based shape-matching techniques. This initial manual solution was refined using nonlinear least-squares optimization to maximize image-edge correspondence. Joint kinematics were determined from the three-dimensional pose of each implant component using Cardan/Euler angles. TKAs were divided into two groups according to the maximum lunge angles; TKAs achieved larger than 130° were defined as high flexion group (H group) and the ones from 110° to 130° were defined as moderate flexion group (M group). Tibial internal position and the AP locations of medial and lateral condyles were examined. Two TKAs were excluded since their maximum flexion was less than 110°. Twelve and eleven TKAs were defined as the H group (High flexing, average 137°, SD 4°) and the M group (Moderate flexing, average 121°, SD 5°), respectively. Tibial internal rotation averaged 10° (SD 4°) and 9° (SD 3°), respectively, at lunge position. The medial and the lateral condyles were located at 9 mm (SD 2 mm) and 17 mm (SD 3 mm) posterior to the tibial centerline during the lunge activity in the M group and at 11 mm (SD 2 mm) and 21 mm (SD 3 mm) in the H group. Tibial rotation was not statistically different (Figure 1), while AP position of the lateral condyle translated more backward in H group at 90° (Figure 2). The TKAs in the M group exhibited femoral forward motion from 0° to 20° flexion, while the H group moved backward (Figure 2). Our results revealed the post-cam mechanisms worked effectively in the H group TKA. The TKAs which acquired deep flexion successfully prevented the “roll forward motion” and had greater femoral posterior translation at 90° where the posterior post-cam mechanism engages. It appears adequate femoral posterior translation may be important to acquire deep flexion after TKA.
Although optimal alignment is essential for improved function and implant longevity after TKA, we have less bony landmarks of tibia relative to femur. Trans-malleolar axis (TMA) is a reference line of distal tibia in the axial plane, which externally rotated relative to a ML axis of proximal tibia. We originally defined another reference axis associated with the orientation of tibial plafond, and then measured tibial torsion in the 3D-coordinate system. Three-dimensional CAD models of 20 tibiae were reconstructed based on pre-operative CT data from OA patients (16 females and 4 males, 73.8 ± 6.9 years old). TMA was a line connecting each apex of medial and lateral malleolus. The plafond axis (PLA) that we originally defined in this study was a line connecting each midpoint of medial and lateral margin of talocrural facet. In terms of interobserver correlation coefficiency and mean errors of the designated points to define those axes, TMA was found out to be 0.982, 3.14 ± 0.47 mm (medial), and 0.988, 4.88 ± 0.59 mm (lateral). Those of PLA were 0.997, 1.97 ± 0.53 mm (medial), and 0.995, 2.02 ± 0.44 mm (lateral). The tibial torsion was 16.3 ± 6.3°with reference to TMA, and 10.2 ± 8.4°to PLA. Based on these results, as for the rotational reference axis in the axial plain of distal tibia, we consider the plafond axis to be another reliable and reproducible axis, which is expected to be applicable in preoperative planning in TKA to reduce outliers of coronal alignment.
The outcomes of various operative methods for osteochondritis dissecans of the femoral condyles were reviewed, and choice of these operative methods were discussed. Twenty-four cases (19 males and 5 females) which underwent operative treatments were reviewed. The operative methods included drilling, repositioning and fixation of the osteochodral fragment, and bone graft or osteochondral graft. The minimum follow-up period was two years. The medial femoral condyle was involved in 17 cases, and the lateral, in seven. Lateral discoid meniscus or meniscal injury was combined in all the 7 cases in the lateral. The operative methods were decided from the condition of the cartilage. Drilling was performed in cases with no or minimal cartilage damages (10 cases). Repositioning (if required) and fixation of the fragment using absorbable pins was carried out in cases with a partial or total fragmentation (7 cases). Bone graft or osteochondral graft was performed when the original site was already degenerated (7 cases). Partial meniscectomy was added when the meniscal injury was combined. In patients who received drilling, the lesion healed radiographically in all the cases and they complained of no or minimal symptoms. In patients who received the fragment fixation, re-union of the fragment was observed in 71% and the clinical outcomes were satisfactory in most of the cases. In patients who received bone graft or osteochondral graft, although union of the graft was observed in all the cases radiographically, 71% of the patients complained of residual pain. From the results, drilling is sufficient if the cartilage surface is not damaged. When the fragmentation occurred already, the fragment should be repositioned and fixed to the original site before degenerated, as its clinical symptoms were much better than those with bone graft or osteochondral graft.