header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Bone & Joint Open
Vol. 2, Issue 6 | Pages 414 - 421
1 Jun 2021
Kim SK Nguyen C Avins AL Abrams GD

Aims

The aim of this study was to screen the entire genome for genetic markers associated with risk for anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injury.

Methods

Genome-wide association (GWA) analyses were performed using data from the Kaiser Permanente Research Board (KPRB) and the UK Biobank. ACL and PCL injury cases were identified based on electronic health records from KPRB and the UK Biobank. GWA analyses from both cohorts were tested for ACL and PCL injury using a logistic regression model adjusting for sex, height, weight, age at enrolment, and race/ethnicity using allele counts for single nucleotide polymorphisms (SNPs). The data from the two GWA studies were combined in a meta-analysis. Candidate genes previously reported to show an association with ACL injury in athletes were also tested for association from the meta-analysis data from the KPRB and the UK Biobank GWA studies.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 230 - 230
1 Jul 2008
Nguyen C Singh D Harrison M Blunn G Dudkiewicz I
Full Access

Introduction: Many mini compression screws are now available for fixation in procedures such as metatarsal osteotomies or arthrodeses of the foot.

The aim of the current study is to compare the compression forces achieved by mini compression screws on cortical and cancellous bone models.

Material and Methods: The screws that were tested are listed in the table below. The compression forces were tested by inserting a pressures load measurement cell between longitudinally-split sheep tibia as a cortical bone model and longitudinally split retrieved femoral heads as a cancellous bone model.

Results: The Headed AO 3.5 mm cortical screw gave the best compression force and the Bold was the weakest, both in cortical and cancellous bone. The relative compression forces of the other tested screws were different between cortical and cancellous bone. Compression with the headless screws was lost as soon as the screw penetrated through the cortex in the cortrical bone model.

Conclusions: The indications for using headless self-tapping screws should be reserved for fixation of cancellous bone or of metatarsal or Akin osteotomies where compression is not required for union. When compression is important, such as in MPJ, tarso-metatarsal or talonavicular arthrodeses, Headed AO 3.5 mm or 2.7 mm cortical or 4 mm cancellous screws, which give better compression, should be used.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 342 - 343
1 May 2006
Nguyen C Singh D Harrison M Blunn G Dudkiewicz I
Full Access

Introduction: Many mini compression screws are now available for fixation in procedures such as metatarsal osteotomies or arthrodeses of the foot.

The aim of the current study is to compare the compression forces achieved by the relatively new commercial mini compression screws on cortical and cancellous bone models.

Material and Methods: The screws that were tested are listed in the table below. All screws apart from the AO screws are headless and cannulated; and all screws apart from the AO cortical screw are self-tapping. The compression forces were tested by inserting a pressures load measurement cell between longitudinally-split sheep tibia as a cortical bone model and longitudinally split retrieved femoral heads as a cancellous bone model. The screws were inserted across the 2 halves with gradual compression after allowing the reading of the cell to settle.

Results: The Headed AO 3.5 mm cortical screw gave the best compression force, both in cortical and cancellous bone and the Bold was the weakest both in cortical and cancellous bone. The relative compression forces of the other tested screws were different between cortical and cancellous bone. Compression with the headless screws was lost as soon as the screw penetrated through the cortex in the cortrical bone model.

Conclusions: The indications for using headless self-tapping screws should be reserved for fixation of cancellous bone or of metatarsal or Akin osteotomies where compression is not required for union. When compression is important, such as in MPJ, tarso-metatarsal or talo-navicular arthrodeses, Headed AO 3.5 mm or 2.7 mm cortical or 4 mm cancellous screws, which give better compression, should be used.