header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 52 - 52
1 Nov 2016
Ng J Nishiwaki M Gammon B Athwal G King G Johnson J
Full Access

Fracture or resection of the radial head can cause unbalance and long-term functional complications in the elbow. Studies have shown that a radial head excision can change elbow kinematics and decrease elbow stability. The radial head is also important in both valgus and varus laxity and displacement. However, the effect of radial head on ulnohumeral joint load is not known. The objective of this experimental study was to compare the axial loading produced at the ulnohumeral joint during active flexion with and without a radial head resection.

Ten cadaveric arms were used. Each specimen was prepared and secured in an elbow motion simulator. To simulate active flexion, the tendons of the biceps, brachialis, brachioradialis, and triceps were attached to servo motors. The elbow was moved through a full range of flexion. To quantify loads at the ulnohumeral joint, a load cell was implanted in the proximal ulna. Testing was conducted in the intact then radial head resected case, in supination in the horizontal, vertical, varus and valgus positions.

When comparing the average loads during flexion, the axial ulnar load in the horizontal position was 89±29N in an intact state compared to 122±46N during radial head resection. In the vertical position, the intact state produced a 67±16N load while the resected state was 78±23N. In the varus and valgus positions, intact state resulted in loads of 57±26N and 18±3N, respectively. Conversely, with a radial head resection, varus and valus positions measured 56±23N and 54±23N loads, respectively. For both joint configurations, statistical differences were observed for all flexion angles in all arm positions during active flexion (p=0.0001). When comparing arm positions and flexion angle, statistical differences were measured between valgus, horizontal and vertical (p<0.005) except for varus position (p=0.64).

Active flexion caused a variation in loads throughout flexion when comparing intact versus radial head resection. The most significant variation in ulnar loading occurred during valgus and horizontal flexion. The vertical and varus position showed little variation because the position of the arm is not affected by the loss of the radial head. However, in valgus position, the resected radial head creates a void in the joint space and, with gravity, causes greater compensatory ulnar loading. In the horizontal position, the forearm is not directly affected by gravitational pull and cannot adjust to counterbalance the resected radial head, therefore loads are localised in the ulnohumeral joint. These findings prove the importance of the radial head and that a radial head resection can overload the ulnohumeral side.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 19 - 19
1 Oct 2015
Thorpe C Karunaseelan K Ng J Riley G Birch H Clegg P Screen H
Full Access

Introduction

Energy storing tendons such as the equine superficial digital flexor tendon (SDFT) stretch and recoil with each stride and therefore require a high degree of compliance compared to tendons with a purely positional function, such as the equine common digital extensor tendon (CDET). This extra extensibility is provided by a specialised interfascicular matrix (IFM), which provides greater sliding and recoil between adjacent fascicles in energy storing tendons. However, the composition of the IFM remains largely undefined. We hypothesised that the IFM in the SDFT has a distinct composition, with a greater abundance of proteoglycans and elastin which facilitate extension and recoil.

Materials and Methods

Transverse and longitudinal sections were cut from the mid-metacarpal regions of SDFTs and CDETs from 5 horses aged 3–7 years. Sections were stained using Alcian blue/Periodic acid Schiff to detect proteoglycans, elastic Van Giesson's to detect elastin, and immunohistochemistry was performed using antibodies for decorin, biglycan, fibromodulin, lumican and lubricin. Resultant images were graded by blinded observers to assess staining intensity in the IFM and fascicular matrix (FM), and statistical significance determined using ANOVA.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 16 - 16
1 Sep 2012
Sabo MT Shannon H Ng J Ferreira LM Johnson JA King GJ
Full Access

Purpose

Capitellum hemiarthroplasty is an emerging concept. The current metallic capitellar implants have spherical surface shapes, but the native capitellum is not spherical. This study evaluated the effect of capitellar implant shape on the contact mechanics of the radiocapitellar joint when articulating with the native radial head.

Method

Eight paired radii and humeri were potted in a custom jig. Articular casts were made with medium-viscosity resin while 85 N of axial load was applied to the reduced radiocapitellar joint at 0, 45, and 90 of elbow flexion, and at neutral, 50 pronation and 50 supination at each flexion angle. The native radiocapitellar articulation was compared to capitellar hemiarthroplasties of two surface designs (anatomical and spherical). Contact area and shape (circularity) were determined. Circularity was defined as the ratio of the minor axis and major axis of the shape.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 556 - 556
1 Nov 2011
Ng J Lalone EA McDonald CP Ferreira LM King GJ Johnson JA
Full Access

Purpose: The identification of anatomical landmarks is an important aspect of joint surgery, to ensure proper placement and alignment for implants and other reconstructive procedures. At the elbow, the center of the capitellum (derived via a digitization of the surface and subsequent sphere fitting) has been well established as a key landmark to identify the axis of rotation of the joint. For some cases, and in particular minimally invasive surgery, only small regions of the capitellum may be exposed which may lead to errors in determining the centre. The purpose of this study was to identify the optimal location of digitizations of the capitellum.

Method: Twenty-five fresh frozen cadaveric distal humeri (19 left, 6 right) were studied. Using an x-ray computed tomography scanner, volumetric images of each specimen were acquired and used to reconstruct a 3-dimensional digital model of the specimen using the Visualization Toolkit (VTK). A sphere-fit algorithm was used to determine the centre of the spherical capitellum based on manually chosen (digitized) points across the 3D capitellar surface. The true geometric centre was located by digitizing points across the entire capitellar surface. Three sub-regions of the capitellum, commensurate with typical surgical approaches with minimal dissection, were then digitized. These were superior anterior lateral (SAL), inferior anterior lateral (IAL) and a combination of these two regions. These regions were compared to the true center using a 1-way Repeated Measures ANOVA with significance set to p = 0.05.

Results: Digitizations of only SAL and IAL sub-regions resulted in the largest differences relative to the true centre: SAL = 3.9±3.4 mm, IAL = 4.2±3.4 mm, (p < 0.0005). There was no difference between SAL and IAL (p = 1.0). Digitization of the combined SAL + IAL regions, while significantly different from the entire capitellum, resulted in the smallest mean difference of 0.87±0.84 mm.

Conclusion: These data show that the region of digitization affects the accuracy of predicting the capitellum centre. In a previous study by our group, we showed that an accurate determination of the centre of a sphere can be achieved with a small surface area of digitization. In the current study, the large errors that occurred when a small surface was digitized (i.e. SAL and IAL alone), are in all likelihood, due the non-spherical nature of the capitellum. In summary, while the most precise method in locating the true centre is to digitize the entire capitellar surface where possible, an alternative approach is to digitize both the superior and inferior anterior lateral regions.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 452 - 452
1 Aug 2008
Stokes O Ng J Singh A Casey A
Full Access

Aim: The purpose of this study was to evaluate the extent of neurological deficit following excision of spinal neurofibromas.

Methods: Retrospective case series, combined with contemporary neurological examination and outcome questionnaires.

Results: 46 patients (26 males, 20 females) with a mean age of 46 between the years of 1985 – 2005. The incidence of neurological deficit subsequent to nerve sectioning to remove the tumour was 28/46 (60.9%) in the acute period. In the long term this reduced to 28%.

Conclusions: Despite the sectioning of nerves during surgery motor or sensory deficit was surprisingly rare. It was mainly sensory and recovered with time. This is presumably due to neural plasticity and dermatomal overlap. These results provide useful information for surgeons to counsel their patients preoperatively.