Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 33 - 33
1 Nov 2016
Morellato J Desloges W Louati H Papp S Pollock J
Full Access

Fractures of the anteromedial facet (AO/OTA 21-B1.1, O'Driscoll Type 2, subtype 3) are associated with varus posteromedial rotational instability of the ulnohumeral joint and early post-traumatic arthritis. The purpose of this study was to examine the stability of plate (locking and non-locking) vs screw constructs in the fixation of anteromedial coronoid facet fractures in a sawbone model.

An anteromedial coronoid facet fracture (AO/OTA 21-B1.1) was simulated in 24 synthetic ulna bones. They were then assigned into 3 fracture fixation groups: non-locking plate fixation, locking plate fixation, and dual cortical screw fixation. An AO 2.0 mm screw and plate system was used for the plate fixation groups and 2.0 mm cortical screws were used for the screw-only group. Following fixation, each construct was potted in bismuth alloy and secured to a servohydraulic load frame. Each construct was cycled in tension and then in compression at 0.5Hz. For both cycling modalities, an incremental loading pattern was used starting at 40 N and increased by 20 N every 200 cycles up to 200N. Fracture fragment displacement was recorded with an optical tracking system. Following cyclic loading each construct was loaded to failure (displacement >2 mm) at 10mm/min.

Tension cycling – All constructs in the plated groups (locking and non-locking constructs) survived the cyclic tension loading protocol (to 200N) with maximum fragment displacement of 12.60um and 14.50um respectively. There was no statistical difference between the plated constructs at any load level. No screw-only fixed construct survived the tension protocol with mean force at failure of 110N (range 60–180N).

Compression Testing – All constructs in the plated groups (locking and non-locking constructs) survived the cyclic compression loading protocol (to 200N), while all but one of the screw-only fixation constructs survived. Fracture fragment displacement was significantly greater in the screw-only repair group across all loading levels when compared to the plated constructs. There was no statistically significant difference in fragment motion between the locking and non-locking groups.

Failure Testing – The maximum load at failure in the screw-only group (281.9 N) was significantly lower than locking and non-locking constructs (587.0 N and 515.5N respectively, p <0.05). There was no difference between the locking and non-locking group in mean load to failure or mean stiffness. Screw construct stiffness (337.2 N/mm) was lower than the locking and non-locking constructs (682.9 N/mm and 479.1 N/mm respectively) however this did not reach statistical significance (p=0.051).

Fixation of anteromedial coronoid fractures is best achieved with a plating technique. Locking plates did not offer any advantage over conventional plates. Isolated screw fixation might not provide adequate stability for these fractures which could result in loss of reduction leading to post-traumatic arthrosis or instabilility.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 31 - 31
1 Nov 2016
Morellato J Louati H Bodrogi A Stewart A Papp S Liew A Gofton W
Full Access

Traditional screw fixation of the syndesmosis can be prone to malreduction. Suture button fixation however, has recently shown potential in securing the fibula back into the incisura even with intentional malreduction. Yet, if there is sufficient motion to aid reduction, the question arises of whether or not this construct is stable enough to maintain reduction under loaded conditions. To date, there have been no studies assessing the optimal biomechanical tension of these constructs. The purpose of this study was to assess optimal tensioning of suture button fixation and its ability to maintain reduction under loaded conditions using a novel stress CT model.

Ten cadaveric lower limbs disarticulated at the knee were used. The limbs were placed in a modified external fixator frame that allows for the application of sustained torsional (5 Nm), axial (500 N) and combined torsional/axial (5Nm/500N) loads. Baseline CT scans of the intact ankle under unloaded and loaded conditions were obtaining. The syndesmosis and the deltoid ligament complex were then sectioned. The limbs were then randomised to receive a suture button construct tightened at 4 kg force (loose), 8 kg (standard), or 12 kg (maximal) of tension and CT scans under loaded and unloaded conditions were again obtained. Eight previously described measurements were taken from axial slices 10 mm above the tibiotalar joint to assess the joint morphology under the intact and repair states, and the three loading conditions: a measure of posterolateral translation (a, b), medial/lateral translation (c, g), a measure of anterior-posterior translation (f), a ratio of anterior-posterior translation (d/e), an angle (Angle 1) created by a line parallel to the incisura and the axis of the fibula, and an angle (Angle 2) created between the medial surfaces of two malleoli. These measurements have all been previously described. Each measurement was taken at baseline and compared with the three loading scenarios. A repeated measures ANOVA with a Bonferroni correction for multiple comparisons was used to test for significance.

Significant lateral (g, maximum 5.26 mm), posterior (f, maximum 6.42 mm), and external rotation (angle 2, maximum 11.71°) was noted with the 4 kg repair when compared to the intact, loaded state. Significant posterior translation was also seen with the both the 8 kg and 12 kg repairs, however the incidence and magnitude was less than with the 4 kg repair. Significant overcompression (g, 1.69 mm) was noted with the 12 kg repair.

Suture button constructs must be appropriately tensioned to maintain reduction and re-approximate the degree of physiological motion at the distal tibiofibular joint. If inserted too loosely, these constructs allow for supraphysiologic motion which may have negative implications on ligament healing. These constructs also demonstrate overcompression of the syndesmosis when inserted at maximal tension however the clinical effect of this remains to be determined.