Rotational malalignment of the femoral component still causes patellofemoral complications that result in failures in total knee arthroplasty (TKA). To achieve correct rotational alignment, a couple of anatomical landmarks have been proposed. Theoretically, transepicondylar axis has been demonstrated as a reliable rotational reference line, however, intraoperative identification of the transepicondylar axis is challenging in some cases. Therefore, surgeons usually estimate the transepicondylar axis from posterior condylar axis (PCA) using twist angle determined by the preoperative X-rays and CT. While PCA is the most apparent landmark, radiographs are not able to detect posterior condylar cartilage. In most osteoarthritic knees, the cartilage thickness of the posterior condyle is different between medial and lateral condyles. The purpose of this study is to evaluate the effect of the posterior condylar cartilage on rotational alignment of the femoral component in large number of arthritic patients. Furthermore, we investigated whether the effect of posterior condylar cartilage is different between osteoarthritis (OA) and rheumatoid arthritis (RA). Ninety-nine OA knees and 36 RA knees were included. Detailed information is summarized in Table 1. All cases underwent TKA using navigation system. The institutional review board approved the study protocol and informed consent was obtained from each participants. To evaluate the effect of posterior condylar cartilage, we measured two different condylar twist angle (CTA) using navigation system and intraoperative fluoroscopy-based multi-planner reconstruction (MPR) images obtained by a mobile C-arm. To uniform the SEA in two different measuring systems, we temporary inserted a suture anchors in medial and lateral prominence. The CTA that does not include the posterior condylar cartilage (MPR CTA) is evaluated on MPR images and the CTA that does include the posterior condylar cartilage (Navi. CTA) is calculated by navigation system. The difference between these two angles corresponds to the effect of posterior condylar cartilage on the rotation of the femoral component (Fig. 1). The paired or unpaired t test was used to compare the obtained data. The statistics were performed using GraphPad Prism 6. A P value of 0.05 or less is considered as a significant difference.Objective
Methods
Recently, there are increasing literatures of the in vivo kinematics of total knee arthroplasty (TKA). Those previous studies have been reported in regard of either intra-operative kinematics or post-operative kinematics. However, the direct correlation between intra- and post-operative kinematics of TKA has not been revealed. There are no evidences that intra-operative kinematics can lead to post-operative kinematics. The purpose of this study is to verify the direct correlation between intra- and post-operative kinematics of TKA.Introduction
Purpose
The aim of this study is to verify the intra-rater and inter-rater reliability of intra-operative kinematics by hand in TKA using a computer assisted image-free navigation system. Total knee arthroplasty (TKA) was performed on the knees of twelve (12) patients with knee navigation by one surgeon. Patients were divided into two groups: Group A included six knees that were operated on with assistant A (senior joint surgeon); and Group B included the other six knees that were operated on with assistant B (resident). For each knee, axial rotation was evaluated three times by the operator and the assistant using a navigation system at 30°, 60°, 90°, 120° passive flexions by hand. Intra-class correlation coefficients (ICC) were calculated for each evaluation to examine intra-rater and inter-rater reliability.Introduction
Material and Methods