Anabolic and catabolic signalling processes within IVDs display overlapping pathways, however some pathways were identified as selective to catabolic signalling and inhibition of one of these pathways inhibited some of the catabolic factors induced by IL-1 although NFkB inhibition also affected anabolic expression. Degeneration of intervertebral discs (IVDs) is implicated in 40% of low back pain cases. In the normal disc the balance between anabolic and catabolic processes are carefully balanced. During degeneration this balance is lost in favour of catabolic processes which lead to degradation of the IVD, infiltration of blood vessels and nerves and release of cytokines which sensitise nerves to pain. Interleukin 1 (IL-1) is known to be important in the pathogenesis of IVD degeneration, here we investigated the intracellular signalling pathways activated by IL-1 and those activated by an anabolic factor (CDMP-1) to investigate differential pathways. Human nucleus pulposus cells (NP) removed during discetomy for nerve root pain were stimulated with IL-1 or CDMP-1 for 30 minutes. Site-specific phosphorylation of 46 signalling molecules were identified using R&D proteome array. The activation of ERK1/2, p38, c-jun, and IkB were confirmed using cell based ELISAs, in addition pNFκB localisation in stimulated cells was determined using immunohistochemisty. Pre-treatment with inhibitors to p38, and NFkB for 30 minutes, followed by stimulation with IL-1 (10ng/mL) or CDMP-1 (10ng/mL) for 24 hours was investigated to determine effects on anabolic and catabolic factors. In addition localisation of phosphorylated c-jun, p38 and NFkB were investigated within paraffin embedded sections of human IVD to investigate the presence of active pathways Twenty intracellular signalling pathways were activated following CDMP-1 treatment and 8 signalling pathways activated by IL-1. Of note key classical IL-1 signalling pathways p38 MAPK, ERK 1/2 and JNK were activated by IL-1, however of these ERK 1/2 particularly was also activated by CDMP-1, whilst p38 and c-jun were only activated by IL-1. IL-1 induced activation of NFkB signalling to a greater extent than CDMP-1, these results were confirmed by the ‘in cell ELISAs’. IVD tissue samples displayed immunopositive staining for phosphorylated c-jun, NFkB and p38. Inhibition of p38 signalling inhibited IL-1 induced MMP 13 expression, but had little effect on the induction of IL-8. However inhibitors of NFkB signalling pathway failed to inhibit the induction of MMP 13 but abrogated the induced IL-6 and IL-8 expression. IL-1 induced a complete aberration of aggrecan expression by NP cells in alginate culture, this effect was partly inhibited by p38 MAPK inhibitor but was completely restored by inhibiting NFkB signalling. However the aggrecan expressed in CDMP-1 treated cells was decreased by inhibiting NFkB but not p38. Here, we have shown that anabolic and catabolic signalling processes within IVDs show a number of overlapping pathways, however a number of differential pathways were identified and inhibition of p38 MAPK and NFkB pathways inhibited a number of catabolic processes investigated which were induced by IL-1. Thus inhibition of signalling pathways could be a novel mechanism of inhibiting catabolic processes which could hold promise to inhibit degeneration at early stages of disease but also create the correct tissue niche to promote regeneration of the disc.Summary