To investigate factors that contribute to patient decisions regarding attendance for arthroplasty during the COVID-19 pandemic. A postal questionnaire was distributed to patients on the waiting list for hip or knee arthroplasty in a single tertiary centre within the UK. Patient factors that may have influenced the decision to attend for arthroplasty, global quality of life (QoL) (EuroQol five-dimension three-level (EQ-5D-3L)), and joint-specific QoL (Oxford Hip or Knee Score) were assessed. Patients were asked at which ‘COVID-alert’ level they would be willing to attend an NHS and a “COVID-light” hospital for arthroplasty. Independent predictors were assessed using multivariate logistic regression.Aims
Methods
This aim of this study was to investigate apoptosis, reactive oxygen species (ROS), and their upstream markers in Anteromedial Gonarthrosis (AMG). Ten resection specimens, from patients undergoing unicompartmental knee replacement for AMG, and ten control specimens, collected from vascular disease patients undergoing above knee amputation, were used. Routine histology and immunohistochemical studies were conducted for Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Active Caspase 3, Cytochrome C, Active Bax, Bim, 3-Nitrotyrosine and Forkhead box O3A (FOXO 3A).Aim
Methods
Anteromedial Osteoarthritis of the Knee (AMOA) is a distinct phenotype of OA. Within this pattern of disease, the anterior third of the medial tibial plateau exhibits full thickness cartilage loss. The middle third has damaged partial thickness cartilage, and the posterior third has retained cartilage, which is seen on macroscopic visual assessment to be normal. This study investigates the molecular features of progressive severities of cartilage damage within this phenotype. Ten medial tibial plateau specimens were collected from patients undergoing unicompartmental knee replacements. The cartilage within the area of macroscopic damage was divided into equal thirds: T1(most damaged), to T3 (least damaged). The area of macroscopically undamaged cartilage was taken as a 4th sample, N. The specimens were prepared for histological (Safranin-O) and immunohistochemical analysis (Type I and II Collagen, proliferation and apoptosis). Immunoassays were undertaken for Collagens I and II and GAG content. Real time PCR compared gene expression between areas T and N. There was a decrease in OARSI grade across the four areas, with progressively less fibrillation between areas T1, T2 and T3. Area N had a grade of 0 (normal). The GAG immunoassay showed decreased levels with increasing severity of cartilage damage (p<
0.0001). Proliferation and apoptosis, as expected, were increased in the more damaged areas. There was no significant difference in the Collagen II content or gene expression between areas. The Collagen I immunohistochemistry showed increased staining within chondrocyte pericellular areas in the undamaged region (N) and immunoassays showed that the Collagen I content of this macroscopically and histologically normal cartilage, was significantly higher than the damaged areas (p<
0.0001). Furthermore, real time PCR showed a significant increase in Collagen I expression in the macroscopically normal areas compared to the damaged areas (p=0.04). We conclude that in this phenotype the Collagen I increase, in areas of macroscopically and histologically normal cartilage, may represent very early changes of the cartilage matrix within the osteoarthritic disease process. This may be able to be used as an assay of early disease and as a therapeutic target for disease modification or treatment.
The cartilage within the area of macroscopic damage was divided into equal thirds: T1(most damaged), to T3 (least damaged). The area of macroscopically undamaged cartilage was taken as a 4th sample, N. The specimens were prepared for histological (Safranin-O and H&
E staining) and immunohistochemical analysis (Type I and II Collagen, proliferation and apoptosis). Immunoassays were undertaken for Collagens I and II and GAG content. Real time PCR compared gene expression between areas T and N.
The GAG immunoassay showed decreased levels with increasing severity of cartilage damage (ANOVA P<
0.0001). There was no significant difference in the Collagen II content or gene expression between areas. The Collagen I immunohistochemistry showed increased staining within chondrocyte pericellular areas in the undamaged region (N) and immunoassays showed that the Collagen I content of this macroscopically and histologically normal cartilage, was significantly higher than the damaged areas (ANOVA P<
0.0001). Furthermore, real time PCR showed that there was a significant difference in Collagen I expression between the damaged and macroscopically normal areas (p=0.04).