header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 505 - 505
1 Oct 2010
Mayer S Büttner A Jansson V Mayer W Müller P Schieker M Schiergens T Sievers B
Full Access

Background: In regenerative medicine the autologous cartilage implantation (ACI) has been used for the repair of cartilage defects. As modification of ACI, the matrix assisted ACI is used nowadays with varying results. There is a general discussion about whether supporting scaffolds should be used or whether a scaffold-free cartilage repair is the method of choice. The major problem of scaffold-free regenerates is how to keep the cells in place after transplantation. Aim of this study was to examine a new scaffold-free diffusion-culture model, which uses a mega-congregate of chondrocytes cultured at an air-medium interface. This scaffold-free high-density diffusion culture could be used to repair cartilage defects.

Material and methods: Human chondrocytes from passage 1–7 were expanded in monolayer and transferred to pellet-culture or diffusion-culture. After one week cultures were stained with toluidine blue and safranin-O and evaluated by immunohistochemical staining for type II collagen. Quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) was performed for the mRNAs of cartilage markers.

Results: Positive alcian blue staining was detectable in diffusion-culture for human chondrocytes up to passage 7. Within passages the amount of proteoglycan production in relationship to the number of cells increased. There was a positive signal for Collagen type II in diffusion-cultures up to passage 7.

In qRT-PCR a redifferentiation of human chondrocytes was shown by the transfer into diffusion-culture. Within passage 1 to 3 human chondrocytes which were cultured in monolayer lost the ability to express Collagen Type II but could regain it if they were transferred to diffusion-culture. At diffusion-culture chondrocytes showed the highest expression of Collagen type II at passage 1 when compared to monolayer or to pellet-culture.

Conclusion: It could be shown that the cultivation in a scaffold-free diffusion-culture can lead to redifferentiation of human chondrocytes Chondrocytes in diffusion-cultures tend to form their own matrix and produce Collagen type II at higher amounts than in monolayer or in normal pellet-cultures. Therefore diffusion-culture congregates might be an appropriate tool to be used for a new scaffold-free cartilage regeneration approach.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 315 - 315
1 May 2010
Mayer W Wagner S Linke R Maegerlein S Jansson V Mueller P
Full Access

Introduction: Arthroplasty plays a growing role in our society today. Due to scientific and medical progress there are an increasing number of viable candidates and the improvement of quality of life thereafter speaks for itself.

Even though the operations are largely successful, complications after joint replacement surgery occur frequently. Approximately 10% of lower limb arthroplasties need surgical revision, of which 70% are due to loosening. The purpose of this study was to assess the feasibility of 18-fluorodeoxyglucose positron emission tomography (18FFDG–PET) in detecting septic and aseptic endoprosthetic loosening of hip and knee endoprostheses.

Materials and Methods: Thirty-three patients (age range: 45–90y) with lower limb arthroplasty complaints (74 prostheses) were studied preoperatively with 18F-FDG-PET. All patients underwent surgery at a later stage with microbiological culturing to differentiate aseptic and septic loosening and to confirm the final diagnosis. Prostheses were tested intraoperatively for stability and microbiology.

Results: The sensitivity/specificity of 18F-FDG-PET towards implant loosening in the hip was 80%/87%, in the knee 56%/82%.

The sensitivity/specificity for infectious loosening in hip replacement arthroplasties was 67%/83%, in the knee 14%/89%.

Discussion: 18F-FDG-PET seems an excellent method for detecting hip endoprosthetic loosening and a moderate tool to diagnose hip implant infection. It should not be seen as the method of choice to diagnose knee endoprosthetic loosening and infection.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 176 - 176
1 Mar 2009
Mayer W Wagner S Linke R Maegerlein S Jansson V Müller P
Full Access

Introduction: Arthroplasty plays a growing role in our society today. Due to scientific and medical progress there are an increasing number of viable candidates and the improvement of quality of life thereafter speaks for itself.

Even though the operations are largely successful, complications after joint replacement surgery occur frequently. Approximately 10% of lower limb arthroplasties need surgical revision, of which 70% are due to loosening. The purpose of this study was to assess the feasibility of 18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) in detecting septic and aseptic endoprosthetic loosening of hip and knee endoprostheses.

Materials and Methods: Thirty-three patients (age range: 45 – 90y) with lower limb arthroplasty complaints (74 prostheses) were studied preoperatively with 18F-FDG-PET. All patients underwent surgery at a later stage with microbiological culturing to differentiate aseptic and septic loosening and to confirm the final diagnosis. Prostheses were tested intraoperatively for stability and microbiology.

Results: The sensitivity/specificity of 18F-FDG-PET towards implant loosening in the hip was 80%/87%, in the knee 56%/82%.

The sensitivity/specificity for infectious loosening in hip replacement arthroplasties was 67%/83%, in the knee 14%/89%.

Discussion: 18F-FDG-PET seems an excellent method for detecting hip endoprosthetic loosening and a moderate tool to diagnose hip implant infection. It should not be seen as the method of choice to diagnose knee endoprosthetic loosening and infection.