Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 17 - 17
14 Nov 2024
Kjærgaard K Ding M Mansourvar M
Full Access

Introduction

Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial. Machine learning offers a viable alternative to manual analysis for measuring e.g. bone volume versus total volume.

The objective was to develop a neural network for image segmentation, and to assess the accuracy of this network when applied to ectopic bone formation samples compared to a ground truth.

Method

Thirteen tissue slides totaling 114 megapixels of ectopic bone formation were selected for model building. Slides were split into training, validation, and test data, with the test data reserved and only used for the final model assessment. We developed a neural network resembling U-Net that takes 512×512 pixel tiles. To improve model robustness, images were augmented online during training.

The network was trained for 3 days on a NVidia Tesla K80 provided by a free online learning platform against ground truth masks annotated by an experienced researcher.