header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 150 - 151
1 Mar 2006
Sayegh F Anagnostidis K Makris. V Tsitouridis J Kirkos J Kapetanos A
Full Access

Percutaneous vertebroplasty is an effective procedure for the treatment of osteoporotic vertebral compression fractures, spinal metastasis and other pathologic spinal diseases. However, there has been no mention in the relevant literature of the use of percutaneous vertebroplasty for the treatment of spinal pseudarthrosis in ankylosing sponyloarthritis. A 58-year-old male with a long standing ankylosing spondylitis presented with increasing, intolerable and non-intractable back pain. There was a 16- month-old history of a non-significant minor fall. Various radiological imaging technicques showed spinal pseudarthrosis with extensive discovertebral destruction and fracture of the posterior elements at the level T11–T12. Under local anaesthesia, and through a transpedicular approach with the guidance of CT, the cannula of a large bore needle was introduced into the level of spinal pseudarthrosis. Bone cement was then instilled into the affected spinal level. Results were documented by spiral CT and with sagittal reconstructions. Extraosseous cement leakage was seen at the puncture site of the vertebra and in the epidural veins and the paravertebral vessels. However, the patient did not present any immediate or late neurological and systemic complications. Percutaneous vertebroplasty of spinal pseudarthrosis in patients with ankylosing spondylitis is an effective procedure for stabilization of the affected spine segments and pain management.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 181 - 181
1 Feb 2004
Scholz J Makris V Schamberger H Panides G
Full Access

Introduction: Modern navigation technology appears to be acquiring an established place in the fields of total knee arthroplasty. This technology helps the surgeon to apply his manual skills with greater precision and thus more effectively, and its positive impact on the quality of surgical treatment has already been demonstrated. The Surgetics navigation system described in this paper shows that the Technology can be adapted to the requirements of daily surgical practice, without compromising its utility to the surgeon.

The Surgetics navigation system: The Surgetics navigation system represents a multifunctional tool, that can be used in a lot of fields in orthopedic surgery. For every special use as prosthesis, osteotomies ore ACL-replacement, the hard- and software is adapted thus not any compromise should be accepted for the surgical procedure. In total knee prostheses navigation no ct- scan is needed preoperatively, the patented bone morphing procedure is entering all the anatomic datas to the computer for an absolutely correct positioning of the implant. Consequently the pre- and intraoperative inputs are reduced to a minimum.

Material: To evaluate the advantage of the Surgetics navigation system in total knee prosthesis, the technical datas of a non constrained knee prostheses with rotational platform (ESKA) had been entered in the system. The patient datas, concerning size of the knee joint, leg axes, center of rotation of the hip joint and ligament balance are transmitted by rigid bodies and a pointer with 6 reflecting markers each and a stereo infrared camera. The rigid bodies are fixed by two thin Steinmann-nails each in the tibial and femoral bone. On a monitor each step of the bone morphing and the surgical procedure is shown. Thus the bonecutting guides are placed in an absolutely correct position. The extension – and the flexion gap is presented as well for a precise ligament balancing. The additional time for using this system is not extending 15 minutes.

Methods: 50 ESKA total knee prosthesis with rotational platform have been implanted with standard instrumentation and another 50 with the use of the Surgetics navigation system. In both groups the reason fore surgery has been nearly identic. In 92% the patients suffered from arthritis. More varus than valgus deformities have been seen. The range of deformity went up to 25 degrees.In 8% posttraumatic deformities with consecutive arthritis leaded to surgery. Preoperative X rays of the whole leg in a standing position have been taken, the shifting of the bearing axes in comparison to the center of the knee joint has been determined. The maximum of this shifting was 6.3 cm. The HSS score has been used to describe the clinical findings pre- and postoperativly. In 38 cases of the S- group and in 39 of the N- group the joint was inserted cementless. 2 in the s-group and 1 in the n-group in a hybrid technic, the rest cemented.

Results: The follow up time in both groups ranged from 6 month to one year.Because it has not been the purpose of this paper to report on long time clinical results or survivership, this short follow up time seems to be acceptable for the evidence upon the value of a navigation system.The postoperative x- rays showed a correction of the bearing axes of the leg in relation to the center of the knee joint in a 4 degree corridor in 94,6% for the N – group and in 69,9% in the S- group. Two failures in the N-group came from a change of position of the rigid bodies during surgery due to pushing them by lack of caution.

Conclusion: The surgetics navigation system is a technical help for the orthopedic surgeon, improving the radiological and clinical results in knee arthroplasty. The correction of the bearing axes in the 4 degree corridor is significantly higher in the N-group then in S-group. This has as well an important influence on the clinical outcome. The HSS score by first impression differs by 6 points. The use of the system is economically reasonable,because preoperative ct- scan is not needed and the time of surgery is not extended more than 15 minutes.The Surgetics navigation system with its sophisticated software is leading the surgeon visually through the bone morphing procedure, the bone cutting process and the ligament balancing step by step.