header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 43 - 43
1 Jun 2023
Mackey R Robinson M Mullan C Breen N Lewis H McMullan M Ogonda L
Full Access

Introduction

The purpose of this study is to evaluate the radiological and clinical outcomes in Northern Ireland of free vascularised fibular bone grafting for the treatment of humeral bone loss secondary to osteomyelitis. Upper limb skeletal bone loss due to osteomyelitis is a devastating and challenging complication to manage for both surgeon and patient. Patients can be left with life altering disability and functional impairment. This limb threatening complication raises the question of salvage versus amputation and the associated risk and benefits of each. Free vascularised fibula grafting is a recognised treatment option for large skeletal defects in long bones but is not without significant risk. The benefit of vascularised over non-vascularised fibula grafts include preservation of blood supply lending itself to improved remodeling and osteointegration.

Materials & Methods

Sixteen patients in Northern Ireland had free vascularised fibula grafting. Inclusion criteria included grafting to humeral defects secondary to osteomyelitis. Six patients were included in this study. Patients were contacted to complete DASH (Disabilities of the Arm, Shoulder and Hand) questionnaires as our primary outcome measure. Secondary outcome measures included radiological evaluation of osteointegration and associated operative complications. Complications were assessed via review of Electronic Care Record outpatient and in-patient documents.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 45 - 45
1 Jun 2023
Robinson M Mackey R Duffy C Ballard J
Full Access

Introduction

Osteogenesis imperfect (OI) is a geno- and phenotypically heterogeneous group of congenital collagen disorders characterized by fragility and microfractures resulting in long bone deformities. OI can lead to progressive femoral coxa vara from bone and muscular imbalance and continuous microfracture about the proximal femur. If left untreated, patients develop Trendelenburg gait, leg length discrepancy, further stress fracture and acute fracture at the apex of the deformity, impingement and hip joint degeneration. In the OI patient, femoral coxa vara cannot be treated in isolation and consideration must be given to protecting the whole bone with the primary goal of verticalization and improved biomechanical stability to allow early loading, safe standing, re-orientation of the physis and avoidance of untreated sequelae. Implant constructs should therefore be designed to accommodate and protect the whole bone. The normal paediatric femoral neck shaft angle (FNSA) ranges from 135 to 145 degrees. In OI the progressive pathomechanical changes result in FNSA of significantly less than 120 degrees and decreased Hilgenreiner epiphyseal angles (HEA). Proximal femoral valgus osteotomy is considered the standard surgical treatment for coxa vara and multiple surgical techniques have been described, each with their associated complications. In this paper we present the novel technique of controlling femoral version and coronal alignment using a tubular plate and long bone protection with the use of teleoscoping rods.

Methodology

After the decision to operate had been made, a CT scan of the femur was performed. A 1:1 scale 3D printed model (AXIAL3D, Belfast, UK) was made from the CT scan to allow for accurate implant templating and osteotomy planning. In all cases a subtrochanteric osteotomy was performed and fixed using a pre-bent 3.5 mm 1/3 tubular plate. The plate was bent to allow one end to be inserted into the proximal femur to act as a blade. A channel into the femoral neck was opened using a flat osteotome. The plate was then tapped into the femoral neck to the predetermined position. The final position needed to allow one of the plate holes to accommodate the growing rod. This had to be determined pre operatively using the 3D printed model and the implants. The femoral canal was reamed, and the growing rod was placed in the femur, passing through the hole in the plate to create a construct that could effectively protect both the femoral neck and the full length of the shaft. The distal part of the plate was then fixed to the shaft using eccentric screws around the nail to complete the construct.