The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for Objectives
Methods
This study presents the use of precision surface machining on artificial joint bearing surfaces in order to inhibit macrophage activation. Ultra-high molecular weight polyethylene (UHMWPE) is widely used as a bearing material in polymer-on-hard joint prostheses. However, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and implant loosening. Several studies report that wear particle size is a critical factor in macrophage activation, with particles in the size range of 0.1 – 1.0 μm being the most biological active. The surface for a conventional Co-Cr-Mo alloy joint implant generally has a 10.0 – 20.0 nm roughness. After precision machining, the Co-Cr-Mo alloy surface had a 1.0 – 2.0 nm roughness with scattered concave shapes up to 50 nm in depth. This precision surface machining method used a typical lapping method, but the relationship between the slurry and the machining surface was strictly controlled in order to emphasize the micro-erosion mechanism. A pin-on-disc wear tester capable of multidirectional motion was used to verify that the new surface was the most appropriate for joints. Tests were carried out in 25% (v/v) fetal calf serum with sodium azide to retard bacterial growth. UHMWPE pins, 12.0 mm in diameter with a mean molecular weight of 6.0 million, were placed on the Co-Cr-Mo alloy disc at a contact pressure of 6.0 MPa. A sliding speed of 12.1 mm/s, and a total sliding distance of 15.0 km were applied. The new surface reduced the amount of UHMWPE wear, which would ensure the long-term durability of joints. The new surface also enlarged the size of UHMWPE particles, but did not change their morphological aspect. Primary human peripheral blood mononuclear phagocytes were cultured with the particles. The wear particles generated on the new surface inhibited the production of IL-6, which indicates a reduction of induced tissue reaction and joint loosening.
An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active. To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface textured on Co-Cr-Mo alloy as a counterface material was invented (Figure 1). Although the generally-used surface for a conventional artificial joint has 10 nm roughness (G-1), the nano-level surface has a superfine surface of 1 nm with groove and dimples against the bearing area. The existence probability of groove or dimples, and their surface waviness were adjusted (P-1, 2, 3, 4 and W-1, 2). Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km. The nano-textured surfaces reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint (Figure 2). The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction ( Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO2 in air at 37 degrees C, and the quantitative PCR was performed for genetic expression of IL-6. The wear debris generated on the nano-textured surface inhibited the genetic expression of IL-6, which does not induce the tissue reaction and joint loosening.
An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active. To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface texturing on Co-Cr-Mo alloy as a counterface material was invented. Although the generally-used surface for a conventional artificial joint has 10 nm roughness (Surface A), the nano-level textured surface invented has a superfine surface of 1 nm with 3% of groove and dimples against the bearing area. The depths of groove and dimples are less than 50 nm (Surface F). Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km. The superfine surface with nano-level grooves and dimples (Surface F) reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint. The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction ( Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO2 in air at 37 degrees C, and the quantitative PCR was performed for genetic expression of IL-6 (Figure 3). The wear debris generated on the nano-textured surface inhibited the genetic expression of IL-6, which does not induce the tissue reaction and joint loosening.