Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 4, Issue 10 | Pages 801 - 807
23 Oct 2023
Walter N Szymski D Kurtz SM Lowenberg DW Alt V Lau EC Rupp M

Aims

This work aimed at answering the following research questions: 1) What is the rate of mechanical complications, nonunion and infection for head/neck femoral fractures, intertrochanteric fractures, and subtrochanteric fractures in the elderly USA population? and 2) Which factors influence adverse outcomes?

Methods

Proximal femoral fractures occurred between 1 January 2009 and 31 December 2019 were identified from the Medicare Physician Service Records Data Base. The Kaplan-Meier method with Fine and Gray sub-distribution adaptation was used to determine rates for nonunion, infection, and mechanical complications. Semiparametric Cox regression model was applied incorporating 23 measures as covariates to identify risk factors.


Bone & Joint Research
Vol. 12, Issue 2 | Pages 103 - 112
1 Feb 2023
Walter N Szymski D Kurtz SM Lowenberg DW Alt V Lau E Rupp M

Aims

The optimal choice of management for proximal humerus fractures (PHFs) has been increasingly discussed in the literature, and this work aimed to answer the following questions: 1) what are the incidence rates of PHF in the geriatric population in the USA; 2) what is the mortality rate after PHF in the elderly population, specifically for distinct treatment procedures; and 3) what factors influence the mortality rate?

Methods

PHFs occurring between 1 January 2009 and 31 December 2019 were identified from the Medicare physician service records. Incidence rates were determined, mortality rates were calculated, and semiparametric Cox regression was applied, incorporating 23 demographic, clinical, and socioeconomic covariates, to compare the mortality risk between treatments.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 3 - 3
1 Jan 2016
MacDonald D Baykal D Underwood R Malkani AL Parvizi J Kurtz SM
Full Access

Introduction

First-generation annealed HXLPE has been clinically successful at reducing both clinical wear rates and the incidence of osteolysis in total hip arthroplasty. However, studies have observed oxidative and mechanical degradation occurring in annealed HXLPE. Thus, it is unclear whether the favorable clinical performance of 1st generation HXLPE is due to the preservation of bearing surface tribological properties or, at least partially, to the reduction in patient activity. The purpose of this study was to evaluate the in vitro wear performance (assessed using multidirectional pin-on-disk (POD) testing) of 1st-generation annealed HXLPE with respect to in vivo duration, clinical wear rates, oxidation, and mechanical properties.

Materials and Methods

103 1st-generation annealed HXLPE liners were collected at revision surgery. 39 annealed HXLPE liners were selected based on their implantation time and assigned to three equally sized cohorts (n=13 per group); short-term (1.4–2.7y), intermediate term (5.2–8.0y) and long-term (8.3–12.5y). From each retrieved liner, two 9-mm cores were obtained (one from the superior region and one from the inferior region). Sixteen cores were fabricated from unimplanted HXLPE liners that were removed from their packaging and six pins from unirradiated GUR 1050 resin served as positive controls. Multidirectional POD wear testing was conducted against wrought CoCr disks in a physiologically relevant lubricant (20 g/L protein concentration) using a 100-station SuperPOD (Phoenix Tribology, UK). Each pin had its own chamber with 15mL lubricant maintained at 37±1°C. An elliptical wear pattern with a static contact stress of 2.0 MPa was employed. Testing was carried out to 1.75 million cycles at 1.0 Hz and wear was assessed gravimetrically. POD wear rates were calculated using a linear regression of volumetric losses. In vivo penetration was measured directly using a calibrated micrometer. Oxidation was assessed on thin films obtained from superior and inferior regions of the liners (ASTM 2102). Mechanical properties were assessed using the small punch test (ASTM 2183).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 132 - 132
1 Jan 2016
MacDonald D Kurtz SM Kocagoz S Hanzlik J Underwood RJ Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Day J Rimnac C
Full Access

Introduction

Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA?

Methods

100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 168 - 168
1 Mar 2010
Walter WL Waters TS Gillies RM Donohoo SM Hozack WJ Kurtz SM
Full Access

Squeaking in hip arthroplasty is now well-documented but hitherto poorly understood. In this paper, we report data progressively accumulated from a series of studies undertaken by our group to investigate the mechanisms of noise production associated with ceramic-on-ceramic bearings. We reviewed demographic and radiographic data comparing squeaking with silent hips. Edge loading of the acetabular components was investigated on retrieved bearings and with finite element analysis. The squeaking sound itself was further investigated through acoustic analysis. Squeaking occurs in younger, heavier, and taller patients.

We found a higher incidence of acetabular component malposition in squeaking hips and edge loading appears to be a causative factor. Finite element analysis revealed a stiffness mismatch between the shell and liner which may allow the shell to oscillate producing an audible squeak. Acoustic and modal analysis show that squeaking is due to a forced vibration and that the natural frequencies of the ceramic components are above the audible range, suggesting that resonance occurs in the metallic, not the ceramic parts. This phenomenon is related to patient factors, surgical factors, and implant factors, which may produce sound by a combination of edge loading of the ceramic and forced vibration of the acetabular shell and/or the femoral stem.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 174 - 174
1 Mar 2010
Haider H Weisenburger JN Kurtz SM Rimnac CM Freedman J Schroeder DW Garvin KL
Full Access

Concerns about reduced strength, fatigue resistance, and oxidative stability of highly crosslinked UHMWPE have limited the acceptance of these materials for TKR. It was hypothesized that a new crosslinked UHMWPE stabilized with vitamin E would substantially improve wear performance and resistance to oxidative degradation without compromising mechanical properties. The purpose of this study was to comprehensively test this hypothesis in vitro.

GUR1020 was machined from isostatic molded bar-stock, crosslinked with 100 kGy, and then doped with vitamin E. This material was compared to direct molded GUR1050 UHMWPE. Both materials were gamma irradiation sterilized as for clinical use. Small punch testing, crack growth rate fatigue testing and oxidation index measurements were performed on each material before and after accelerated aging. Knee simulator testing evaluated wear of each material for 5-million walking cycles. CR knees were tested on a 6-station AMTI knee simulator; PS knees were tested on two 4-station Instron-Stan-more knee simulators. Statistical differences in all metrics were evaluated for significance with ANOVA (p < 0.05).

After 4-week accelerated aging, the control material showed elevated oxidation, loss of small punch mechanical properties and decreased fatigue crack growth resistance. In contrast, the vitamin E stabilized material had minimal changes in these properties. Further, the vitamin E stabilized material exhibited 85% reduction in wear for both the CR and PS designs.

Highly crosslinked UHMWPE stabilized with vitamin E appears to be promising for use as a bearing surface in TKA.