Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 26 - 26
1 Oct 2014
Kovler I Weil Y Salavarrieta J Joskowicz L
Full Access

Trauma surgeries in the pelvic area are often difficult and prolonged processes that require comprehensive preoperative planning based on a CT scan. Preoperative planning is essential for the appreciation and spatial visualisation of the bone fragments, for planning the reduction strategy, and for determining the optimal type, size, and location of the fixation hardware.

We have developed a novel haptic-based patient specific preoperative planning system for pelvic bone fractures surgery planning. The system provides a virtual environment in which 3D bone fragments and fixation hardware models are interactively manipulated with full spatial depth and tactile perception. It supports the choice of the surgical approach and the planning of the two mains steps of bone fracture surgery: reduction and fixation. The purpose of the tool is to provide an intuitive haptic spatial interface for the manipulation of bone fracture 3D models extracted from CT images, to support the selection of bone fragments, the annotation of the fracture surface, the selection and placement of fixation screws, and the creation and placement of fixation plates with an anatomically fit shape.

The system incorporates ligament models that constrain the bone fragments motions and provides a realistic interactive fracture reduction support feeling to the surgeon. It allows the surgeon to view the fracture from various directions, thereby allowing fast and accurate fracture reduction planning. Two haptic devices, one for each hand, provide tactile feedback when objects touch without interpenetrating. To facilitate the reduction, the system provides an interactive, haptic fracture surface annotation tool and a fracture reduction algorithm that automatically minimises the pairwise distance between the fracture surfaces. For fracture fixation, the system provides a screw creation and placement capability as well as custom anatomical-fit fixation plate creation and placement. The screw placement is facilitated by the transparent viewing mode that allows the surgeon to navigate the screws inside the bone fragments while constraining them to remain within the bone fragments with haptic forces.

Our experimental results with five surgeons show that the method allows highly accurate reduction planning to within 1 mm or less. To evaluate the alignment in terms of quantity, we created a model of an artificial fracture in a healthy pelvis bone. The created model is placed in its anatomic location thus allowing us to measure the error in relation to its initial position. We calculate the anatomic alignment error by measuring the Hausdorff distance in mm between the fragment positioned in the desired location and the fragment placed by the surgeon. The new haptic-based system also supports patient-specific training of pelvic fracture surgeries.