Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 9 - 9
1 Mar 2017
Wannomae K Micheli B Konsin Z Muratoglu O
Full Access

Introduction

Oxidation of ultrahigh molecular weight polyethylene (UHMWPE) can lead to failure of implants used in total joints. Cyclic loading is postulated to be one mechanism of in vivo oxidation in UHMWPE components as one previous study has shown [1]. We developed an accelerated aging test that incorporated compressive cyclic loading that the UHMWPE components would be exposed to in vivo. Surgeons are moving towards larger femoral heads in hip arthroplasty and removing less bone in knee arthroplasty necessitating thinner UHMWPE components. We hypothesized that, in this accelerated aging test, thinner UHMWPE components would be more susceptible to oxidation caused by the cyclic loading due to higher stresses in the material.

Materials and Methods

All samples tested in this study were Conventional PE: GUR1050 was machined into test specimens, vacuum packaged and gamma sterilized. Test samples were blocks 100 mm × 89 mm in cross-section with 3 different thicknesses: 1 mm, 3 mm, and 10 mm (n=3 each). Three cylinders were cored out of each test sample to serve as controls (Fig 1a) that were physically separated and thereby isolating the oxidation attributable to an applied compressive cyclic load. The controls were placed back into the holes from where they were cored during testing. Compressive loading was administered by a 12.5 mm diameter applicator affixed to a hydraulic test frame (Fig 1b), and all testing was done at 80°C in air. A sinusoidal compressive cyclic stress between 1 and 10 MPa was applied at 5 Hz for 7 days.

Microtomed thin films from all samples were analyzed via Fourier Transform Infrared Spectroscopy (FTIR) to quantify oxidation [2] after testing. Oxidation was measured through the thickness of the sample at targeted points along the length from directly underneath the center of the load applicator to 10mm away (Fig 1a). Oxidation was also measured through the thickness of the cylindrical controls.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 80 - 80
1 Mar 2017
Wannomae K Lozynsky A Konsin Z Muratoglu O
Full Access

Introduction

Corrosion of the femoral head-trunnion junction in modular hip components has become a concern as the corrosion products may lead to adverse local tissue reactions. A simple way to avoid trunnion corrosion is to manufacture the femoral head with a non-metallic material, such as ceramics that are widely. An alternative solution may lie in advanced polymers like polyaryletherketones (PAEKs). These thermoplastics have high mechanical strength necessary for use as femoral heads in hip arthroplasty, but they must be tested to ensure that they do not adversely affect the wear of the ultrahigh molecular weight polyethylene (UHMWPE) liner counterface. Pin-on-disc (POD) wear testing has been extensively used to evaluate the wear properties of UHMWPE prior to more extensive and costly analysis with joint simulators. We hypothesized that the wear of crosslinked UHMWPE would not be adversely affected in POD tests when articulated against an advanced thermoplastic counterface.

Methods

0.1 wt.% VitE blended UHMWPE stock was e-beam irradiated to 100, 125, 140, 160, and 175 kGy and machined into cylindrical pins for testing. An additional group of 100 kGy e-beam irradiated and melted UHMWPE (with no vitamin E) was also machined and tested.

Three different counterface materials were tested: (1) Cobalt-chrome (CoCr) with a surface roughness (Ra) of <0.5 μm, (2) Biolox™ ceramic (CeramTec), and (3) Polyetheretherketone (PEEK), a member of the PAEK family (Fig 1).

A bidirectional POD wear tester [1] was used to measure the wear rate of UHMWPE specimens, where the specimens moved in a 10 mm × 5 mm rectangular pattern under a Paul-type load curve [2] synchronized with the motion. The peak load of the loading curve corresponded to a peak contact pressure of 5.1 MPa between each UHMWPE pin specimen and the counterface disc. Each test was conducted at 2 Hz in undiluted bovine serum stabilized with ethylenediamine tetraacetate (EDTA) and penicillin. The pins were cleaned and weighed daily, and a wear rate was calculated at the end of each test by linear regression.