In the setting of traumatic elbow injuries involving coronoid fractures, the relative size of the coronoid fragment has been shown to relate to the stability of the joint. Currently, the challenge lies in accurately classifying the amount of bone loss in coronoid fractures. In comminuted fractures, bone loss is difficult to measure with plain radiographs or computed tomography. The purpose of this study is to describe a novel radiographic measure, the Coronoid Opening Angle (COA), on lateral elbow radiographs. We demonstrate the relationship of the COA to coronoid height and describe how this measure can be used to estimate bone loss and potentially predict elbow instability following coronoid fracture. Radiographs were drawn from a regional database in a consecutive fashion. Candidate radiographs were excluded on the basis of radiographic evidence of degenerative changes, previous surgery or injury, bony deformity, and inadequate lateral view of the elbow. The COA was measured as the angle between the long axis of the ulna at the level of the trochlear notch, and the tip of coronoid, from a common origin at the posterior cortex of the olecranon. Images were reviewed by a fellowship trained upper extremity surgeon, an upper extremity fellow, and a junior resident. Normal COA, coronoid height, and calculated COA at varying amounts of bone loss were calculated by three reviewers. A sensitivity analysis was performed to determine how the COA can most effectively predict bone loss at varying coronoid heights. Intraclass correlation coefficient (ICC) was calculated for 39 subjects. Seventy-two subjects were included for analysis (M=40, F=32). The normal coronoid opening angle is 33.19 degrees [32.2 – 34.2]. Coronoid height is 18.8 mm [18.1 – 19.6]. Extrapolating this baseline data, the COA at 20%, 33%, and 50% of coronoid bone loss was calculated to be 27.5, 23.5, and 18 degrees, respectively. ICC was found to be 0.90 or higher. Cutoff values were determined to maximize the sensitivity of the COA. A cutoff value of 21 degrees has a 92% sensitivity in detecting a minimum of 50% bone loss. The COA with similar sensitivity in predicting 20% and 33% bone loss are 32 and 27 degrees. The coronoid opening angle is a novel technique that can be used on a lateral elbow radiograph to predict the minimum coronoid bone loss. This can be used to guide clinical decision making and potentially predict instability. Future research will aim to validate this tool in the clinical setting in predicting instability.
This is largest collection of outcomes of distal biceps reconstruction in the literature. 8 subjects prospectively measured pre and post reconstruction Strength deficit in patients with chronic tendon deficit is described. To describe outcomes for 53 chronic distal biceps reconstructions with tendon graft. Clinical outcomes as well as strength and endurance in supination and flexion are reported. To examine eight patients measured pre- and post-reconstruction. To identify deficit in supination and flexion in chronic reconstruction. 53 reconstructions of chronic distal biceps with tendon graft were carried out between 1999 and 2015. 26 subjects agreed to undergo strength testing after minimum one year follow up. Eight subjects were tested both before and after reconstruction. Primary outcomes were strength in elbow flexion and forearm supination. Strength testing of supination and flexion included maximum isokinetic power and endurance performed on a Biodex. Clinical outcomes measures included pre-operative retraction severity, surgical fixation technique, postoperative contour, range of motion, subjective satisfaction, SF-12, DASH, MAYO elbow score, ASES and pain VAS Non-parametric data was reported as median (interquartile range), while normally-distributed data was reported as mean with 95% Confidence Limits. Hypothesis testing was performed according to two-tailed, paired t-tests. Median time from index rupture to reconstructions 9.5 (range 3–108) months. Strength measurements were completed at a median follow-up time of 29 (range 12–137) months on 26 subjects. The proportion of patients that achieved 90% strength of the contralateral limb post-reconstruction was 65% (17/26) for peak supination torque, and 62% (16/26) for peak flexion torque. Supination and flexion endurance was 90% of the contralateral arm in 81% (21/26) and 65% (17/26) of subjects, respectively. Ten subjects (39%) achieved 90% strength of the contralateral arm on at least four of five strength tests. Eight of the 26 patients were evaluated pre- and post-surgery. As compared to the contralateral limb, chronic distal biceps rupture was found to have a mean [95%CI] deficit in peak supination torque of 31.0 [21.0, 42.9]% (p=0.002). Mean deficit in peak flexion torque of 34.2 [23.1, 45.4]% (p <0.001). Reconstruction resulted in an increase in peak supination torque of 33.5 [8.7, 58.3]% (p=0.0162), increase in peak flexion torque of 35.0 [6.4, 63.6]% (p=0.023), increase in isometric strength of 57.6 [36.1, 79.1]% (p<0.001), increase in supination endurance of 0.6 [-22.2, 23.4]% (p=0.668), and a decrease in flexion endurance of 4.8 [-23.3, 13.7](p=0.478). Ninety-six percent of the patients (25/26) were satisfied, or very satisfied with the overall outcome of the surgery, while median Mayo score post-reconstruction was 100 (range: 55–100). Chronic distal biceps tendon rupture results in less supination loss and greater flexion loss than previously reported. Reconstruction with tendon graft results in a significant, but incomplete recovery of peak supination and flexion torque, but no significant change in endurance. Clinical patient satisfaction with surgical outcomes is high.