header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 78 - 78
1 Jan 2018
Maranho D Kiapour A Kim Y Novais E
Full Access

The intra-epiphyseal growth of the proximal femur has been focus of studies because of the potential relationship with the development of slipped capital femoral epiphysis and cam deformity in femoroacetabular impingement. We aimed to evaluate the developmental pattern of the epiphyseal tubercle and extension in normal boys and girls from eight to fifteen years, without hip conditions. We performed three-dimensional (3D) analysis of pelvic computed tomographic scans of 80 subjects with suspect of appendicitis, consisting of five boys and five girls for each age, from eight to 15 years old. Images were segmented slice by slice at the level of the growth plate using biplanar orientation. The 3D-segmented epiphyses were used to measure the location and height of the tubercle, the height of the epiphyseal extension, and the epiphyseal diameter. We found that the epiphyseal tubercle was eccentrically located at the posterolateral quadrant of the physeal surface. The absolute height of the epiphyseal tubercle did not vary between ages (R2=0.04; p=0.101). The epiphyseal diameter increased with age (R2=0.74; p<0.001), making the tubercle height proportionally smaller with the epiphyseal growth (9% reduction in tubercle height normalised by the epiphyseal diameter). The normalised epiphyseal extension height significantly increased by 160% from 8 to 15 years of age. Our observation validates the hypothesis of the cupping mechanism provided by the peripheral growth of the epiphyseal extension, while the epiphyseal tubercle relatively decreases in size during the skeletal growth. Further research will be important to determine the role of these structures in the epiphyseal stability.