header advert
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 125 - 125
1 Feb 2020
Iizawa N Oshima Y Kataoka T Majima T Takai S
Full Access

Background

In order to restore the neutral limb alignment in total knee arthroplasty (TKA), surgical procedure usually starts with removing osteophytes in varus osteoarthritic knees. However, there are no reports in the literature regarding the exact influence of osteophyte removal on alignment correction. The purpose of this study was to define the influence of osteophyte removal alone on limb alignment correction in the coronal plane in TKA for varus knee.

Methods

Twenty-eight medial osteoarthritic knees with varus malalignment scheduled for TKA were included in this study. After registration of a navigation system, each knee was tested at maximum extension, and at 30, 40 and 60 degrees of flexion before and after osteophyte removal. External loads of 10 N-m valgus torque at each angle and in both states were applied. Subsequently, the widths of the resected osteophytes were measured.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 23 - 28
1 Jan 2020
Kurosawa T Mifune Y Inui A Nishimoto H Ueda Y Kataoka T Yamaura K Mukohara S Kuroda R

Aims

The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes.

Methods

Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives

The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy.

Methods

Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined.


Introduction

A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA).

We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA.

Patients and methods

Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled.

To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a).

In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA.

The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 24 - 24
1 Feb 2017
Iizawa N Oshima Y Kataoka T Matsui S Takai S
Full Access

Introduction

For restoration of neutral limb alignment in Total Knee Arthroplasty (TKA), we usually start by removing osteophytes in varus osteoarthritic knees. However, we have found no reports in the literature regarding research on the exact influence of osteophyte removal on angle correction. The purpose of this study was to define the influence of osteophyte removal on limb alignment correction in the coronal plane in TKA.

Materials and Methods

Nine patients with varus malalignment that were scheduled for TKA were included in this study. Only patients with degenerative osteoarthritis were considered. After registration of a navigation system, each knee was tested at maximum extension, and 30 and 60 degrees of flexion before and after osteophyte removal. The same examiner applied all external loads of 10 N-m valgus torque at each angle and in both states. Subsequently, the widths of the osteophytes were measured. All data were analyzed statistically using paired t-test and correlation coefficient. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 87 - 87
1 May 2016
Kataoka T Iizawa N Mori A Oshima Y Matsui S Takai S
Full Access

Introduction

Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on valgus and rotatory stability in TKA.

Materials and Methods

This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with an intact knee (S0), and thereafter femoral arthroplasty only (S1), tibial arthroplasty (S2), release of the dMCL (S3), and finally, release of the POL (S4). The same examiner applied all external load of 10 N-m valgus and a 5 N-m internal and external rotation torque at each flexion angle for the each cutting state. All data were analyzed statistically using one-way ANOVA and we investigated the correlation between the medial gap and the rotation angle. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 47 - 47
1 May 2016
Iizawa N Mori A Oshima Y Matsui S Kataoka T Takai S
Full Access

Introduction

Many factors can influence post-operative kinematics after total knee arthroplasty (TKA). These factors include intraoperative surgical conditions such as ligament release or quantity of bone resection as well as differences in implant design. Release of the medial collateral ligament (MCL) is commonly performed to allow correction of varus knee. Precise biomechanical knowledge of the individual components of the MCL is critical for proper MCL release during TKA. The purpose of this study was to define the influences of the deep medial collateral ligament (dMCL) and the posterior oblique ligament (POL) on kinematics in TKA.

Materials and Methods

This study used six fresh-frozen cadaveric knees with intact cruciate ligaments. All TKA procedures were performed by the same surgeon using CR-TKA with a CT-free navigation system. Each knee was tested at 0°, 20°, 30°, 60°, and 90° of flexion. One sequential sectioning sequence was performed on each knee, beginning with femoral arthroplasty only (S1), and thereafter sequentially; medial half tibial resection with spacer (S2), ACL cut (S3), tibial arthroplasty (S4), release of the dMCL (S5), and finally, release of the POL (S6). The same examiner applied all external loads of 10 N-m valgus and 5 N-m internal and external rotation torques at each flexion angle and for each cut state. The AP locations of medial and lateral condyles were determined as the lowest point on each femoral condyle. All data were analyzed statistically using paired t-test. A significant difference was determined to be present for P < .05.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 454 - 454
1 Nov 2011
Matsuura Ohashi H Okamoto Y Okajima Y Kataoka T Tashima H Kitano K
Full Access

Direct anterior approach (DAA) is an inter-muscular approach that needs no muscle detached. In THA through DAA approach, exposure of the acetabulum is facilitated, while the key points of this approach are femoral lift-up and hip extension to get sufficient access to the femoral canal. To investigate the strategy for femoral lift-up, we released the capsule step by step and measured the distance of femoral lift-up at each step in cadavers and clinical cases. The effects of hip extension on femoral lift-up were also evaluated.

Three fresh frozen cadavers were used. In supine position, the hip joint was exposed through DAA by two experienced surgeons. After anterior capsulotomy and femoral head resection, posterior capsule release was performed followed by superior capsule release in one side, and superior release was followed by posterior release in the other side. Finally, internal obturator muscle was released in both side. At each step, the distance of femoral lift-up was measured under the traction force of 70N. The effects of hip extension were investigated in 0, 15 and 25 degrees hyper-extension. Thirty-six THA were performed through DAA. Posterior capsule release was performed followed by superior capsule release in 13 hips, and superior release was followed by posterior release in 23 hips. At each step, the distance of femoral lift-up was measured under the traction force of 70N at each step same as the cadaver study.

In cadaver study, anterior capsulotomy and posterior capsule release affected little the femoral lift-up. The distance increased after superior capsular release. The distance decreased as hip hyperextension unless the superior capsule was released. The effect of internal obturator muscle release was not observed. In clinical studies, the same tendency was observed in clinical cases. Superior capsule release was the most effective for the femoral lift-up.

The results of this study indicate that superior capsule release is the first step for the femoral liftup. The second step is hip extension to get access to the femoral canal. By performing these procedures step by step, rasping and stem insertion can be achieved with minimal soft tissue release.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 76 - 76
1 Mar 2010
Teraura H Yamano Y Sakanaka H Gotani H Komatsu T Mega R Kataoka T Sasaki K
Full Access

Introduction: To improve the therapeutic results for AO type C intraarticular distal radius fractures in young and middle-aged patients, it is important to achieve and maintain anatomical reduction, and evaluate and treat soft-tissue injuries. We previously employed arthroscopically assisted reduction and percutaneous pinning (ARPP) combined with external fixation. Since 2003, we have employed ARPP combined with open reduction and internal fixation (ORIF) using volar locking plates.

Methods: The subjects were twenty-six patients under 60 years old. The patients comprised thirteen men and thirteen women aged from 16 to 57 (mean 43.5) years. The type of fracture according to the AO classification was C1 in six patients, C2 in ten, and C3 in ten. The follow-up period was 12–18 (mean 13.5) months. The radial inclination (RI), volar tilt (VT), and ulnar variance (UV) were measured radiographically at the time of injury, immediately after surgery, and at final evaluation. The Mayo wrist score was used for clinical evaluation.

Results: Union was achieved in all patients. The triangular-fibrocartilage complex injury was detected in nineteen patients, the scapholunate-interosseous ligament injury in twenty-three, and the lunotriquetral-interosseous ligament injury in nineteen. Radiographic evaluation showed that the mean RI, VT, and UV at presentation, immediately after surgery, and at final evaluation was 12.8, 21.0, and 20.9 degrees, −15.4, 9.7, and 9.6 degrees, and 3.10, 0.30, and 0.35 mm, respectively. The Mayo wrist score averaged 87.6 points.

Conclusion: Although treatment of AO type C intraarticular distal radius fractures is difficult, ARPP combined with ORIF achieved relatively good results.