header advert
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 20 - 20
1 Apr 2017
Meijer M Boerboom A Stevens M Reininga I Janssen D Verdonschot N
Full Access

Background

Trabecular metal (TM) cones are designed to fill up major bone defects in total knee arthroplasty. Tibial components can be implanted in combination with a stem, but it is unclear if this is necessary after reconstruction with a TM cone. Implanting a stem may give extra stability, but may also have negative side-effects. Aim of this study was to investigate stability and strain distribution of a tibial plateau reconstruction with a TM cone while the tibal component is implanted with and without a stem, and whether prosthetic stability was influenced by bone mineral density (BMD).

Methods

Tibial revision arthroplasties were performed after reconstruction of an AORI 2B bone defect with TM cones. Plateaus were implanted in seven pairs of cadaveric tibiae; of each pair, one was implanted with and the other without stem. All specimens were loaded to one bodyweight alternating between the medial and lateral tibia plateau. Implant-bone micro motions, bone strains, BMD and correlations were measured and/or calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 24 - 24
1 Apr 2017
Janssen D Bitter T Schreurs B Marriott T Khan I Verdonschot N
Full Access

Background

Fretting at modular junctions is thought to be a ‘mechanically assisted’ corrosion phenomenon, initiated by mechanical factors that lead to increased contact stresses and micromotions at the taper interface. We adopted a finite element approach to model the head-taper junction, to analyse the contact mechanics at the taper interface. We investigated the effect of assembly force and angle on contact pressures and micromotions, during loads commonly used to test hip implants, to demonstrate the importance of a good assembly during surgery.

Methods

Models of the Bimetric taper and adaptor were created, with elastic-plastic material properties based on material tests with the actual implant alloy. FE contact conditions were validated against push-on and pull-off experiments. The models were loaded according to ISO 7206-4 and −6, after being assembled at 2-4-15kN, both axially and at a 30° angle. Average micromotions and contact pressures were analysed, and a wear score was calculated based on the contact pressures and micromotions.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 133 - 133
1 Jul 2014
O'Kane C Vrancken A O'Rourke D Janssen D Ploegmakers M Buma P Fitzpatrick D Verdonschot N
Full Access

Summary

Our statistical shape analysis showed that size is the primary geometrical variation factor in the medial meniscus. Shape variations are primarily focused in the posterior horn, suggesting that these variations could influence cartilage contact pressures.

Introduction

Variations in meniscal geometry are known to influence stresses and strains inside the meniscus and the articulating cartilage surfaces. This geometry-dependent functioning emphasizes that understanding the natural variation in meniscus geometry is essential for a correct selection of allograft menisci and even more crucial for the definition of different sizes for synthetic meniscal implants. Moreover, the design of such implants requires a description of 3D meniscus geometry. Therefore, the aim of this study was to quantify 3D meniscus geometry and to determine whether variation in medial meniscus geometry is size or shape driven.