Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 20 - 20
1 Aug 2018
Ohashi H Yo H Ikawa T Minami Y Teraoka T
Full Access

Reconstruction of massive acetabular bone defects in primary and revision THA is challenging for reconstructive joint surgeons. The use of porous metal augments is one of the options. The advantages of porous metal augments are easy to use, modularity and lack of resorption. We investigated the radiological results of porous metal augments used for massive acetabular bone defects in primary and revision THA.

Forty-one hips in forty patients had porous metal augments between 2011 and 2016. Thirty of the procedures were revision arthroplasties and 11 were primary procedures (Crowe type III in 5 hips, Crowe type IV in 3, septic hip sequalae in 2 and RA in one). Four of the revisions were second-stage reimplantation after infection. The Paprosky classification for revision was 2B in 4 hips, 2C in one, 3A in 3 and 3B in 22. Regenerex augments were used in 39 hips and trabecular metal augments were used in 2. Thirty-six cups were cemented and 5 cups were uncemented.

Mean follow-up was 37.6 months (range, 1–82). Radiographic findings of osteointegration between host bone and the porous metal augments were assessed. The presence or absence of radiolucent lines between cement or cup/host bone and augment/host bone interface was noted.

Two revisions were performed due to infection, one month and 66 months after operation. The other implants were stable without any complications. Osteointegration between host bone and the porous metal augments were recognized in 36 hips. Radiolucent lines between cement/host bone interface, less than 1 mm in width, were visualized in 2 hips.

Porous metal augments are convenient and our short-term results showed excellent radiological results for massive acetabular bone defects in primary and revision THA.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 108 - 108
1 Mar 2017
Yo H Ohashi H Ikawa T
Full Access

Introduction

The KneeAlign2 (OrthAlign, Inc., Aliso Viejo, CA) is a portable accelerometer-based navigation device for use in performing the distal femoral resection in total knee arthroplasty (TKA). This device works as a computer-assisted surgical system. It does not require the use of a large console for registration and alignment feedback.(image1,2)

Purpose

The aim of this study was to investigate the accuracy in positioning the femoral component and the presense of a learning curve in conducting TKA using this device.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 59 - 59
1 Jan 2016
Ikawa T Hiratsuka M Takemura S Kim M Kadoya Y
Full Access

INTRODUCTION

Although the most commonly used method of femoral component alignment in total knee arthroplasty (TKA) is an intramedullary (IM) guides, this method demonstrated a limited degree of accuracy. The purpose of this study was to assess whether a portable, accelerometer-based surgical navigation system (Knee Align 2 system; Orth Align, Inc, Aliso Viejo, Calif) improve accuracy of the post-operative radiographic femoral component alignment compared to conventional IM alignment guide.

MATERIALS & METHODS

Since February 2014, 44 consecutive patients (39 female, 5 male) with primary arthritis of the knee were enrolled in this prospective, randomized controlled study. 24 patients underwent TKA (Vanguard RP or PS, Biomet Japan) using the navigation device for the distal femoral resection (Navigated Group), and 20 patients with conventional femoral IM alignment guide. The proximal tibial resection was performed using an extramedullary guide. All the operation was performed by a single senior surgeon (YK) with the same gap balancing technique except for the use of the navigation system for the femur. Accuracy of femoral implant positioning was evaluated on 2 weeks postoperative standing anteroposterior (AP) hip to ankle radiographs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 85 - 85
1 Jan 2016
Kadoya Y Tsujimoto T Ikawa T Kim M
Full Access

INTRODUCTION

Rotational alignment of the femoral and tibial component in total knee arthroplasty (TKA) are separately determined based on the anatomy of each bone. Popular references are the transepicondylar axis (TEA) for femoral component, and medial one-third of the tibial tubercle for the tibial component. It was reported that these references are not in accordance with each other in osteoarthritic (OA) knees and rotational mismatch could occur even when the components were accurately aligned. There has been, however, a paucity of data as for the rotational mismatch after TKA for OA knees. The purpose of this study was to evaluate the rotational mismatch between the femoral and tibial component after TKA for OA knees.

SUBJECTS & METHODS

Eighty-four knees which underwent primary TKA for the varus osteoarthritis of the knee were analyzed. Those knees were chosen by the retrospective confirmation of the precise rotational alignments of both femoral and tibial components by postoperative computed tomography (with ±3 degrees to the targeted reference lines described below). The femoral reference line was the surgical epicondylar axis and the tibial reference line was Akagi's line; a line connecting the midpoint of the tibial insertion of the posterior cruciate ligament and the medial border of patellar tendon. Intraoperative, dynamic evaluations of the rotational mismatch between femoral and tibial components was performed with a special device attached to the mobile-bearing trials at full extension and in neutral, passive external rotation and passive internal rotation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 102 - 102
1 Jun 2012
Iwaki H Yoshida T Ikebuchi M Minoda Y Iida T Ikawa T Nakamura H
Full Access

Introduction

There is many reports about complications with a resurfacing total hip arthroplasty (RHA). One of the most common complications is the femoral neck fracture. A notch and malalignment were risk factors for this. For an accurate implanting the femoral component in RHA, we performed 3D template and made a patient specific template (PST) using 3D printer and applied this technique for a clinical usage. We report a preliminary early result using this novel technique.

material and method

We performed 10 RHAs in nine patients (7 male, 2 female) from June 2009 to March 2010 due to osteonecrosis in 7 hips and secondary osteoarthritis in 3hips with a mean age of 48 years (40-60). We obtained a volumetric data from pre-operative CT and planned using 3D CAD software. Firstly, size of femoral components were decided from the size planning of cups. We aimed a femoral component angle as ten degrees valgus to the neck axis in AP and parallel in lateral view avoiding a notch. We measured femoral shaft axis and femoral neck axis in AP and lateral view using 3D processing software. PSTs were made using Laser Sintering by 3D printer which had the heat tolerance for sterilization in order to insert the femoral guide wire correctly. We operated in postero-lateral approach for all the patients PST has the base (contact part) fit to poterior inter trochanteric area. It has the arm reached from the base and sleeve hole to insert the guide pin into the femoral head. We measured the femoral component angle in three dimensions using the 3D processing software postoperatively. We compared the difference of this angle and the pre-operative planed angles. We also investigated the operation time, the volume of bleeding during operation and complications.