Patient self-reported outcome scales have recently been used to evaluate total knee arthroplasty (TKA) outcomes. Many follow-up studies have been conducted on patients undergoing TKA; however, they have mostly reported outcomes after unilateral TKA. We believe that a longitudinal study after bilateral TKA will be more useful in evaluating the quality of life (QOL) of such patients. The objective of this study was to longitudinally evaluate QOL using the Japanese Knee Osteoarthritis Measure (JKOM). Objective outcomes were assessed using the Knee Society Score (KSS) and the Timed Up and Go test (TUG) for more than 5 years after bilateral TKA. Furthermore, QOL and objective outcomes were compared between younger (age ≤ 80 years at the final follow-up point) and older (age > 80 years) age groups.Introduction
Objectives
Precise implant matching with a resected bony surface is a crucial issue to ensure a successful total knee arthroplasty (TKA). Extremely undersized or oversized components should be avoided. Therefore, we should measure the exact anthropometric data of the resected bony surface preoperatively or intraoperatively. The purpose of this study was to intraoperatively analyze the exact anthropometric proximal tibial data of Japanese patients undergoing TKA and correlate these measurements to the dimensions of current prosthetic systems. Three hundred and seventy-three knees in 299 Japanese patients were included in this study. There were 246 women and 53 men with a mean age of 74 (range: 63–85) years. All TKAs were performed by 3 senior surgeons (TS, AK, and NM). The bone cut in the proximal tibia was made perpendicular to the longitudinal axis of the tibia in the frontal plane. Intraoperative measurements of the proximal tibial cut surface were taken after proximal tibial preparation. Akagi's line (center of the posterior cruciate ligament tibial insertion to the medial border of the patellar tendon attachment) was adopted as the anteroposterior axis line of the proximal tibia. A mediolateral (ML) line was drawn perpendicular to Akagi's line. Then, anteroposterior (AP), lateral anteroposterior (lAP), and medial anteroposterior (mAP) lines were drawn as shown in Figure 1.Introduction
Patients and Methods
Various methods to manage medial tibial defects in primary total knee arthroplasty (TKA) have been described. According to Vail TP, metal augmentation is usually indicated for defect depth of >10 mm of the medial tibial plateau. The outcomes of metal augmentation have been described as excellent. Nevertheless, we believe that it is mandatory to preserve as much of the bone as possible for future revision surgeries. Therefore, we performed autologous impaction bone grafting even for large bone defects (defect depth of ≥10 mm) in primary TKA. The objectives of this study are to describe our bone grafting technique in detail and to assess the radiological outcomes of the grafted bone. Between 2003 and 2011, 26 TKAs with autologous impaction bone grafting for ≥10 mm medial tibial defects were performed. The preoperative diagnoses were osteoarthritis in 17 knees, rheumatoid arthritis in 2 knees, osteonecrosis of the medial tibial condyle in 6 knees, and Charcot's joint in 1 knee. The average mediolateral width and depth of the medial tibial defects, measured after the horizontal osteotomy of the tibial articular surface, were 17.8 mm (range, 10–25 mm) and 12.0 mm (range, 10–23 mm), respectively. The average patient age at surgery was 73.2 years (range, 56–85 years). The patients were followed up for an average of 55 months (range 27–109 months). Bone grafting technique: Multiple drill holes (white arrow) were made on the floor of the defect (A) and a morselized cancellous bone was impacted using the grip end of a metal hammer (white asterisk) and firm manual pressure to fill the defect. Thus, the firm impaction prevented bone cement from entering the space between the graft and the tibial host bed. An assistant's index finger (black asterisk) was used as a bank (B). The tibial component was fixed on the grafted bone (white asterisk) with bone cement (C). Internal fixation devices were not required, and stem extension was used in only Charcot's joint (defect depth=23 mm). Aftertreatment was the same as that for the usual TKAs without bone defects.Introduction
Methods
In revision hip Arthroplasty, there often exists the intact femoral cortex under the level of loosened stem. In such cases we used a mid-length full-porous Cementless stem, because femoral bone remodeling and reinforcement could be obtained. We evaluated the readiographical change in femur after the inplantation of full-porous Cementless stem.