Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 69 - 69
10 Feb 2023
Tong Y Holmes S Sefton1 A
Full Access

There is conjecture on the optimal timing to administer bisphosphonate therapy following operative fixation of low- trauma hip fractures. Factors include recommendations for early opportunistic commencement of osteoporosis treatment, and clinician concern regarding the effect of bisphosphonates on fracture healing. We performed a systematic review and meta-analysis to determine if early administration of bisphosphonate therapy within the first month post-operatively following proximal femur fracture fixation is associated with delay in fracture healing or rates of delayed or non-union.

We included randomised controlled trials examining fracture healing and union rates in adults with proximal femoral fractures undergoing osteosynthesis fixation methods and administered bisphosphonates within one month of operation with a control group. Data was pooled in meta-analyses where possible. The Cochrane Risk of Bias Tool and the GRADE approach were used to assess validity.

For the outcome of time to fracture union, meta-analysis of three studies (n= 233) found evidence for earlier average time to union for patients receiving early bisphosphonate intervention (MD = −1.06 weeks, 95% CI −2.01 – −0.12, I2= 8%). There was no evidence from two included studies comprising 718 patients of any difference in rates of delayed union (RR 0.61, 95% CI 0.25–1.46). Meta-analyses did not demonstrate a difference in outcomes of mortality, function, or pain.

We provide low-level evidence that there is no reduction in time to healing or delay in bony union for patients receiving bisphosphonates within one month of proximal femur fixation.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 5 - 5
1 Dec 2016
Holmes S Diaz A Athwal G Faber K O'Gorman D
Full Access

Propionibacterium acnes infection of the shoulder after arthroplasty is a common complication. Current detection methodologies for P. acnes involve prolonged anaerobic cultures that can take up to three weeks before findings can be reported. Our aim was to develop a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) approach that is both sensitive and specific to P. acnes that would enable a 24-hour turnaround between biopsy and results.

Comparisons between the 16S ribosomal sequences of P. acnes and closely related bacteria identified two unique regions in P.acnes to which PCR primers were designed. Additionally, two unique restriction enzyme cut sites for HaeIII were identified within this amplicon. To test the PCR method, arthroscopic surgical biopsies were mechanically homogenised and boiled for 20 minutes to lyse the cellular membranes. PCR was performed using standard conditions followed by a one hour HaeIII enzymatic digest of the PCR product. Resultant fragments were visualised on polyacrylamide gels stained with ethidium bromide. All experiments included no-template controls to rule out reagent contamination and independently confirmed P. acnes DNA as a positive control. Serial dilutions of P. acnes cultures in Robertson's cooked-meat broth and spectrophotometric analysis of cellular concentration were used to assess the sensitivity of the PCR reaction.

A unique 564 base-pair PCR amplicon was derived from different strains of P. acnes. This amplicon was confirmed as P. acnes DNA by gel excision and DNA sequencing. HaeIII digests of the amplicon yielded 3 restriction fragments at the sizes predicted by in silico analyses. Sensitivity testing confirmed that as few as 10 P. acnes cells in a 50µl reaction volume could be detected using this assay. P. acnes was also detected in surgical biopsy samples.

P. acnes infections following shoulder arthroplasty are a serious complication placing a burden on the healthcare system and the patient due to the lengthy surgical revision process that follows. The infections are also difficult to diagnose. This unique assay combines the sensitivity of PCR with the specificity of RFLP mapping to specifically identify P. acnes in surgical isolates. We anticipate that this assay will allow us to determine if a biopsy is P. acnes positive within 24-hours of sampling, allowing for more aggressive antibiotic therapy and monitoring to avoid implant failure and revision surgery. Additionally, this PCR-RFLP method may decrease the false positive rate of extended length cultures due to P. acnes contamination.