Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 20 - 20
1 Nov 2018
Kunisch E Knauf A Hesse E Bothe F Diederichs S Richter W
Full Access

Engineered cartilage is poorly organized and fails to recapitulate physiologic organization in a hyaline upper and a mineralizing bottom zone deemed important for proper function. Objective was to grow bizonal human cartilage constructs in which in vivo mineralization is self-restricted to the bottom zone. Self-assembling biomaterial-free cell discs were generated from mesenchymal stroma cells and allowed to accumulate proteoglycans and collagen-type II over 3 weeks. In vitro mineralization of the cell discs with four mineralization media for up to 8 weeks showed that calcification was supported in all media containing ß-glycerophosphate. However, proteoglycans were retained only in media containing insulin. Bizonal cartilage constructs were made from 3-week non-mineralized cell discs overlaid with chondrocyte-seeded starPEG-heparin hydrogel or with a fibrin-gel layer to select the best design for upper zone development. Freshly prepared zonal constructs were implanted into subcutaneous pouches of immuno-deficient mice to compare in vivo development. After 6 weeks in vivo, both construct types were rich in collagen-type II in the upper zone and contained a mineralized bottom zone. However, solely for starPEG constructs, tissue volume of the upper zone remained high and alkaline phosphatase, alizarin red, and collagen-type X staining were restricted to the bottom zone. StarPEG zonal constructs were superior to fibrin constructs due to self-restriction of mineralization and hypertrophic markers to the bottom zone. This innovative design of bizonal constructs offers the successful generation of an organized cartilage resembling the native cartilage with the chance for immediate use of autogenous chondrocytes in a one-step surgical joint intervention.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 107 - 107
1 Nov 2018
Lotz B Bothe F Seebach E Fischer J Hesse E Diederichs S Richter W
Full Access

Bioactive functional scaffolds are essential for support of cell-based strategies to improve bone regeneration. Adipose-tissue-derived-stromal-cells (ASC) are more accessible multipotent cells with faster proliferation than bone-marrow-derived-stromal-cells (BMSC) having potential to replace BMSC for therapeutic stimulation of bone-defect healing. Their osteogenic potential is, however lower compared to BMSC, a deficit that may be overcome in growth factor-rich orthotopic bone defects with enhanced bone-conductive scaffolds. Objective of this study was to compare the therapeutic potency of human ASC and BMSC for bone regeneration on a novel nanoparticulate β-TCP/collagen-carrier (β-TNC). Cytotoxicity of β-TCP nanoparticles and multilineage differentiation of cells were characterized in vitro. Cell-seeded β-TNC versus cell-free controls were implanted into 4 mm calvarial bone-defects in immunodeficient mice and bone healing was quantified by µCT at 4 and 8 weeks. Tissue-quality and cell-origin were assessed by histology. β-TNC was non-toxic, radiolucent and biocompatible, lent excellent support for human cell persistence and allowed formation of human bone tissue by BMSC but not ASC. Opposite to BMSC, ASC-grafting significantly inhibited calvarial bone healing compared to controls. Bone formation progressed significantly from 4 to 8 weeks only in BMSC and controls yielding 5.6-fold more mineralized tissue in BMSC versus ASC-treated defects. Conclusively, β-TNC was simple to generate, biocompatible, osteoconductive, and stimulated osteogenicity of BMSC to enhance calvarial defect healing while ASC had negative effects. Thus, an orthotopic environment and β-TNC could not compensate for cell-autonomous deficits of ASC which should systematically be considered when choosing the right cell source for tissue engineering-based stimulation of bone regeneration.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 80 - 80
1 Jan 2017
Renz Y Seebach M Hesse E Lotz B Blunk T Berberich O Richter W
Full Access

Long-term regeneration of cartilage defects treated with tissue engineering constructs often fails because of insufficient integration with the host tissue. We hypothesize that construct integration will be improved when implants actively interact with and integrate into the subchondral bone. Growth and Differentiation Factor 5 (GDF-5) is known to support maturation of chondrocytes and to enhance chondrogenic differentiation and hypertrophy of mesenchymal stromal cells (MSC). Therefore, we investigated whether GDF-5 is capable to stimulate endochondral ossification of MSC in vitro and in vivo and would, thus, be a promising candidate for augmenting fibrin glue in order to support integration of tissue engineering constructs into the subchondral bone plate.

To evaluate the adhesive strength of fibrin glue versus BioGlue®, a commercially available glue used in vascular surgery, an ex vivo cadaver study was performed and adhesion strength was measured via pull-out testing. MSC were suspended in fibrin glue and cultivated in chondrogenic medium with and without 150 ng/mL GDF-5. After 4 weeks, the formed cartilage was evaluated and half of the constructs were implanted subcutaneously into immunodeficient mice. Endochondral ossification was evaluated after 2 and 4 weeks histologically and by microCT analysis. BioGlue®and GDF-5-augmented fibrin glue were tested for 4 weeks in a minipig cartilage defect model to assess their orthotopic biocompatibility.

Pull-out testing revealed sufficient adhesive strength of fibrin glue to fix polymeric CellCoTec constructs in 6 mm cartilage defects, however, BioGlue®showed significantly higher adhesive power. In vitro chondrogenesis of MSC under GDF-5 treatment resulted in equal GAG deposition and COLIIa1 and ACAN gene expression compared to controls. Importantly, significantly increased ALP-activity under treatment with GDF-5 on day 28 indicated enhanced hypertrophic differentiation compared to controls. In vivo, MSC-fibrin constructs pre-cultured with GDF-5 developed a significantly higher bone volume on day 14 and 28 compared to controls. When pre-cultured with GDF-5 constructs showed furthermore a significantly higher bone compactness (bone surface/bone volume coefficient) than controls, and thus revealed a higher maturity of the formed bone at 2 weeks and 4 weeks. Orthotopic biocompatibility testing in minipigs showed good defect filling and no adverse reactions of the subchondral bone plate for defects treated with GDF-5-augmented fibrin glue. Defects treated with BioGlue®, however, showed considerable subchondral bone lysis.

Thus, BioGlue®– despite its adhesive strength – should not be used for construct fixation in cartilage defects. GDF-5-augmented fibrin glue is considered promising, because of a combination of the adhesive strength of fibrin with an enhanced osteochondral activity of GDF-5 on MSC. Next step is to perform a large animal study to unravel whether GDF-5 stimulated endochondral ossification can improve scaffold integration in an orthotopic cartilage defect model.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 82 - 82
1 Jan 2017
Hesse E Freudenberg U Niemietz T Greth C Weisser M Renz Y Hagmann S Binner M Werner C Richter W
Full Access

Cell-based tissue engineering is a promising approach for treating cartilage lesions but the optimal cell-scaffold combination for hyaline cartilage regeneration has yet to be identified. Novel hydrogels allow including tailored tissue type specific modifications with physiologically relevant peptides, by this selectively influencing the cell response. Aim of this study was to modify a poly(ethylene glycol) (PEG)/heparin hydrogel by functionalization with cell instructive peptides introducing matrix-metalloprotease (MMP)-degradability, the cell adhesion motif RGD, or collagen binding motifs (CKLER, CWYRGRL) to improve cartilage matrix deposition in tissue engineering constructs.

The hydrogels were formed by mixing thiol-endfunctionalized (MMP-insensitive) starPEG or starPEG-MMP-conjugates carrying MMP-sensitive peptides at every arm and maleimide-functionalized heparin [1] in the presence or absence of cell instructive peptides. Human mesenchymal stromal cells (MSC) or porcine chondrocytes were grown in the hydrogels for up to 4 weeks in vitro under chondrogenic conditions, and in vivo in subcutaneous pockets of immunodeficient mice.

MMP-sensitive and –insensitive starPEG/heparin hydrogels supported chondrogenic differentiation of MSC according to induction of COL2A1, BGN and ACAN mRNA expression. Enhanced MMP-sensitivity and therefore degradability increased cell viability and proliferation. RGD-modification of the hydrogels induced cell-spreading and an intensively interconnected cell network. Other than hypothesized, CKLER and CWYRGRL were unable to raise collagen deposition in constructs in vitro. Matrix deposition in chondrocyte-containing peptide-functionalized hydrogels was high and the instructive effect of the hydrogels on chondrocytes appeared stronger in vivo where the merely pericellular cartilaginous matrix deposition was overcome in RGD-functionalized starPEG/heparin hydrogels.

Peptide-functionalized starPEG/heparin hydrogel altered cell morphology, proliferation and differentiation with MSC being similar sensitive to cell-matrix interaction peptides like articular chondrocytes. We also demonstrated that in vivoperformance of cell instructive hydrogels can exceed results gained by in vitromodels. Altogether, the manipulation of hydrogel constructs with signaling cues is considered promising for functional cartilage tissue engineering.