Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Research
Vol. 8, Issue 11 | Pages 544 - 549
1 Nov 2019
Zheng W Liu C Lei M Han Y Zhou X Li C Sun S Ma X

Objectives

The objective of this study was to investigate the association of four single-nucleotide polymorphisms (SNPs) of the cannabinoid receptor 2 (CNR2) gene, gene-obesity interaction, and haplotype combination with osteoporosis (OP) susceptibility.

Methods

Chinese patients with OP were recruited between March 2011 and December 2015 from our hospital. In this study, a total of 1267 post-menopausal female patients (631 OP patients and 636 control patients) were selected. The mean age of all subjects was 69.2 years (sd 15.8). A generalized multifactor dimensionality reduction (GMDR) model and logistic regression model were used to examine the interaction between SNP and obesity on OP. For OP patient-control haplotype analyses, the SHEsis online haplotype analysis software (http://analysis.bio-x.cn/) was employed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 84 - 84
1 May 2016
Niikura M Nogi S Han Y Turner A Yutani T Uetsuki K Tomita N
Full Access

INTRODUCTION

Ultra-High Molecular Weight Polyethylene (UHMWPE) wear debris is thought to be a main factor in the development of osteolysis (1). However, the method for the evaluation of the biological response to UHMWPE particles has not yet been standardized.

In this study, four different types of UHMWPE particles were generated using a mechanized pulverizing method and the biological responses of macrophages to the particles were investigated using an inverted cell culturing process (2).

MATERIALS & METHODS

Virgin samples were manufactured via Direct Compression Molding (DCM) technique from UHMWPE GUR1050 resin powder (Ticona, USA). For vitamin E (VE)-blended sample, the resin was mixed with VE at 0.3 wt% and the mixture was then molded using DCM. The crosslinked virgin samples were made by gamma ray irradiation to UHMWPE GUR1020 resin sheet (Meditech, USA) with doses of 95kGy ±10% and annealed. The VE-blended crosslinked samples were made by electron beam irradiation to VE-blended samples with doses of 300kGy and annealed. The material conditions were summarized in Figure 1. To pulverize the samples, the Multi-Beads Shocker (Yasui Kikai, Japan) was used.

After pulverization, samples were dispersed in an ethanol solution and sequentially filtered through polycarbonate filters. Over 100 sections of the filter were selected randomly and images of the particles were analyzed using scanning electron microscope (SEM).

To analyze the macrophage biological response, an inverted cell culturing process was used (2). The mouse macrophage-like cells were seeded at densities of 4×105cells per well in a 96-well culture plate and incubated for 1h. UHMWPE particles suspended in the culture medium were then added to each well in the appropriate amount. After that, fresh medium was added to fill the wells, and a sealing film was used to cover the culture plate. The culture plate was then inverted to cause the UHMWPE particles interact with the adhered macrophages. The inverted culture plate was incubated for 8h. The amount of TNF-α was measured by enzyme-linked immunosorbent assay (ELISA).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 14 - 14
1 Sep 2012
Han Y Sardar Z McGrail S Steffen T Martineau P
Full Access

Purpose

Twelve case reports of distal femur fractures as post-operative complications after anterior cruciate ligament (ACL) reconstruction have been described in the literature. The femoral tunnel has been suggested as a potential stress riser for fracture formation. The recent increase in double bundle ACL reconstructions may compound this risk. This is the first biomechanical study to examine the stress riser effect of the femoral tunnel(s) after ACL reconstruction. The hypotheses tested in this study are that the femoral tunnel acts as a stress riser to fracture and that this effect increases with the size of the tunnel (8mm versus 10mm) and with the number of tunnels (one versus two).

Method

Femoral tunnels simulating single bundle (SB) hamstring graft (8 mm), bone-patellar tendon-bone graft (10 mm), and double bundle (DB) ACL reconstruction (7mm, 6 mm) were drilled in fourth generation saw bones. These three experimental groups and a control group consisting of native saw bones without tunnels, were loaded to failure.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 408 - 408
1 Oct 2006
Xia H Peng A Qin S Han Y Shi W Li G
Full Access

Introduction: Although distraction osteogenesis techniques have been used clinically for the treatment of many skeletal conditions with great success over the last 2 decades, one-step larger extent tibial lengthening (> 5 cm) still remains a clinical challenge. In which tension unbalance of bone and soft-tissue may occur, and complications such as foot drop, ankle and knee dysfunction, cartilage injure and secondary osteoarthritis were common. We have designed and manufactured a new lengthener, which allows bone and soft tissue to be lengthened in synchronism, and ankle joint remain in functional position and may move freely during lengthening.

Methods: A dynamic cross joint apparatus at ankle level was added to a classic Ilizarov circular four-ring lengthener, the apparatus is consisted of a half ring, two dynamic junctions and an elastic (spring) device. In application pins were inserted into distant and proximal segment of the tibia, also through calcanues, the external fixator with the trans-joint device was then applied. Total 296 patients (age 6–46, average 21), 466 legs, were treated with this new lengthener, among them were 55 cases of infantile paralysis, 38 cases of post-trauma bone defects, 33 cases with congenital dysplasia and 170 cases of chordrodysplasia, rickets, dwarf and short stature (height < 148cm). Unilateral tibia lengthening was performed in 126 legs and bilateral tibia lengthening was performed in 340 legs.

Results: Average lengthening for lower limb discrepancy cases was 6.8 cm (2–8cm), and 8.8 cm (8–18cm) for dwarf and short stature. Patients can stand straight and walk during the lengthening. Average movement of ankle joint remained at 10 degree in all cases and x-ray confirmed that average ankle joint space was 2.2 mm (1–4mm). There was no foot drop and ankle joint deformity seen, and in 98% cases ankle joint function fully recovered within 1.5 years after lengthening (6–8 months). Common complications were pinhole infection (25 cases) and broken pin (8 cases). If total lengthening was over 10cm, 70% cases developed slight ankle joint stiffness that would gradually recover after physiotherapy. Severe complications occurred in 5 cases (1%), including nonunion 1 case, mal-union 1 case, bone deformity 1 case and re-fracture 2 cases. All of those cases were cured with satisfactory clinical outcome.

Discussion: The challenge of larger range tibial lengthening is mainly the soft tissue complications, such as foot drop, varus and valgus deformity of ankle joint and loss of ankle function. Prolonged soft tissue traction around the ankle joint may lead to increasing cartilage compression, cartilage damage and partial or permanent loss of joint function. Our dynamic lengthener would allow synchronized lengthening of triceps, Achilles tendon and prosterior tibia muscle with tibia, maintain ankle joint space and free ankle movement. This device was simple and easy to apply, with no need of additional Achilles tendon lengthening. Our clinical study has demonstrated that this device drastically reduced the rate of soft tissue complication. This device makes larger extent tibial lengthening (> 5cm) safer and realistic in clinical practice.