Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 21 - 21
1 Oct 2015
Gumbs J Chapman N Young D Clegg P Canty-Laird E
Full Access

Introduction

Tendons are critical to mobility, and are susceptible to degeneration through injury and ageing. Type I collagen is the most abundant protein in vertebrates; it is the main structural protein of the extracellular matrix in numerous musculoskeletal tissues, including tendons. Type I collagen predominantly is a heterotrimer, which consists of two alpha-1 chains and one alpha-2 chain (α1)2(α2) encoded by the COL1A1 and COL1A2 genes, respectively. However, type I collagen can form homotrimers (α1)3 which are protease-resistant, and are associated with age-related musculoskeletal diseases, fibrotic and connective tissue pathologies. Transforming growth factor beta (TGFβ) enhances collagen (I) gene expression, is involved in tendon mechanobiology and repair processes, while its effect on homotrimer formation is unknown. Our aim is to investigate the relative expressions of collagen (I) α1 and α2 polypeptide chains in tenocytes (tendon fibroblasts) stimulated with TGFβ.

Materials and Methods

Included RT-qPCR to measure the relative expression of COL1A1 and COL1A2 genes. [14C]-proline metabolic labelling was used to measure the expression of the collagen (I) α1 and α2 polypeptide chains. These techniques were performed in equine superficial digital flexor tendon (SDFT) tenocytes (n=3) and murine tail tendon tenocytes (n=3) with different concentrations of TGFβ (0.01 ng/ml-100 ng/ml).