Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 97 - 97
1 May 2016
Dai Y Angibaud L Harris B Gulbransen S Begin D
Full Access

Introduction

Evaluations of Computer-assisted orthopaedic surgery (CAOS) systems generally overlooked the intrinsic accuracy of the systems themselves, and have been largely focused on the final implant position and alignment in the reconstructed knee [1]. Although accuracy at the system-level has been assessed [2], the study method was system-specific, required a custom test bench, and the results were clinically irrelevant. As such, clinical interpolation/comparison of the results across CAOS systems or multiple studies is challenging. This study quantified and compared the system-level accuracy in the intraoperative measurements of resection alignment between two CAOS systems.

Materials and Methods

Computer-assisted TKAs were performed on 10 neutral leg assemblies (MITA knee insert and trainer leg, Medial Models, Bristol, UK) using System I (5 legs, ExactechGPS®, Blue-Ortho, Grenoble, FR) and System II (5 legs, globally established manufacturer). The surgeries referenced a set of pre-defined anatomical landmarks on the inserts (small dimples). Post bone cut, the alignment parameters were collected by the CAOS systems (CAOS measured alignment). The pre- and post- operative leg surfaces were scanned, digitized, and registered (Comet L3D, Steinbichler, Plymouth, MI, USA; Geomagic, Lakewood, CO, USA; and Unigraphics NX version 7.5, Siemens PLM Software, Plano, TX, USA). The alignment parameters were measured virtually, referencing the same pre-defined anatomical landmarks (baseline). The signed and unsigned measurement errors between the baseline and CAOS measured alignment were compared between the two CAOS systems (significance defined as p<0.05), representing the magnitude of measurement errors and bias of the measurement error generated by the CAOS systems, respectively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 18 - 18
1 Jan 2016
Angibaud L Liebelt RA Gao B Gulbransen S Silver X
Full Access

Introduction

Clinical outcomes for total knee arthroplasty (TKA) are especially sensitive to lower extremity alignment and implant positioning.1 The use of computer-assisted orthopaedic surgery (CAOS) can improve overall TKA accuracy.2 This study assessed the accuracy of an image-free CAOS guidance system (Exactech GPS, Blue-Ortho, Grenoble, FR) in both a synthetic leg with a normal mechanical axis and legs with abnormal mechanical axis.

Materials and methods

A high-resolution 3D scanner (Comet L3D, Steinbichler, Plymouth, MI) was used to scan varus-deformed (n=12), neutral (n=12), and valgus-deformed (n=4) knee inserts (Mita M-00566, M-00598, M-00567; respectively, Medical Models, Bristol, UK) and collect pre-identified anatomical landmarks prior to using the models to simulate knee surgery. The image-free CAOS guidance system was then used to acquire the same landmarks. After adjusting the position and orientation of the cutting block to match the targets, bone resections were performed, and the knee models were re-scanned. The 3D scans made before and after the cuts were overlaid and the resection parameters calculated using the pre-identified anatomical landmark data and advanced software (UG NX, Siemens PLM, Plano, TX). Data sets obtained from the 3D scanner (see Figure 1A) were compared with data sets from the guidance system (see Figure 1B). Given the accuracy of the 3D scanner (<50μm), its measurements were used as the baseline for assessing CAOS system error.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 7 - 7
1 Dec 2013
Angibaud L Silver X Gulbransen S Stulberg B
Full Access

Introduction

Clinical outcomes for total knee arthroplasty (TKA) are especially sensitive to lower extremity alignment and implant positioning.1 The use of computer-assisted orthopedic surgery (CAOS) can improve overall TKA accuracy.2 This study assessed the accuracy of an image-free CAOS guidance system (Exactech GPS, Blue-Ortho, Grenoble, FR) used in TKA.

Materials and methods:

A high-resolution 3D scanner (Comet L3D, Steinbichler, Plymouth, MI) was used to scan seven knee models (MITA, Medical Models, Bristol, UK) and collect pre-identified anatomical landmarks (see Figure 1) prior to using the models to simulate knee surgery.

The image-free CAOS guidance system was then used to acquire the same landmarks. After adjusting the position and orientation of the cutting block to match the targets, bone resections were performed, and the knee models were re-scanned. The 3D scans made before and after the cuts were overlaid (see Figure 2) and the resection parameters calculated using the pre-identified anatomical landmark data and advanced software (XOV & XOR, RapidForm, Lakewood, CO and UG NX, Siemens PLM, Plano, TX). Data sets obtained from the 3D scanner were compared with data sets from the guidance system. Given the accuracy of the 3D scanner, its measurements were used as the baseline for assessing CAOS system error.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 229 - 229
1 Dec 2013
Angibaud L Silver X Gulbransen S Stulberg B
Full Access

Introduction

From pre-operative planning to final implant cementation, total knee arthroplasty (TKA) can be defined by a succession of individual steps, each presenting potential errors that can result in devices being implanted outside the desired range of alignment.

Our study used an image-free computer-assisted orthopedic surgery (CAOS) guidance system (Exactech GPS, Blue-Ortho, Grenoble, FR) to evaluate alignment discrepancies occurring during different steps of a typical TKA procedure.

Materials and methods:

A surgical profile was established to define resection parameters and steps for proximal tibial and distal femoral cuts (see Figure 1A) to be made on seven synthetic knee models (MITA, Medical Models, Bristol, UK). First, the guidance system was used to acquire pre-identified landmarks. Next, a cutting block was adjusted to match the resection targets and then fixed to the bone using locking pins. Bone cuts were performed and then checked. Data was collected from the guidance system at three steps: (1) cutting block adjusted but not pinned to bone (see Figure 1B), (2) cutting block adjusted and pinned to bone (see Figure 1C), and (3) after checking cuts (see Figure 1D). These data were then compared to the resection target parameters to assess potential discrepancies.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 107 - 107
1 Aug 2013
Angibaud L Silver X Gulbransen S Stulberg B
Full Access

Clinical outcomes for total knee arthroplasty (TKA) are especially sensitive to lower extremity alignment and implant positioning. The use of computer-assisted orthopedic surgery (CAOS) can improve overall TKA accuracy. This study assessed the accuracy of an image-free CAOS guidance system (Exactech GPS, Blue-Ortho, Grenoble, FR) used in TKA.

A high-precision 3D scanner (Comet L3D, Steinbichler, Plymouth, MI) was used to scan seven knee models (MITA, Medical Models, Bristol, UK) and collect pre-identified anatomical landmarks prior to using the models to simulate knee surgery. The Exactech GPS was then used to acquire the same landmarks. After adjusting the Exactech GPS cutting block to match the targets, bone resections were performed, and the knee models were re-scanned. The 3D scans made before and after the cuts were overlaid and the resection parameters calculated using the pre-identified anatomical landmark data and advanced software (XOV & XOR, RapidForm, Lakewood, CO and UG NX, Siemens PLM, Plano, TX). Data sets obtained from the 3D scanner were compared with data sets from the guidance system. Given the accuracy of the 3D scanner, its measurements were used as the baseline for assessing CAOS system error.

The CAOS system bone resection measurement errors had an overall mean of less than 0.35 mm. The mean errors for joint angle measurement was less than 0.6°. Even considering the ranges, errors were no more than 1 mm for all bone resection measurements and no more than 1° for all joint angle measurements. The low variability is also supported by small SD values.

To our knowledge, this is the first study to use a high-resolution 3D scanner to assess the accuracy of surgical cuts made with image-free CAOS system assistance. Determining precise landmarks using CAOS for TKA has been shown to be of critical importance. For this reason, the anatomical landmarks used by the scanner and guidance system were carefully identified and prepared to ensure consistency.

The study demonstrated that the evaluated image-free CAOS system was able to achieve a high level of in-vitro accuracy (small mean errors) as well as a high level of precision (small error variability) when making femoral and tibial bone resections during TKA.