header advert
Results 1 - 13 of 13
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 9 - 9
1 Jun 2021
Greene A Verstraete M Roche C Conditt M Youderian A Parsons M Jones R Flurin P Wright T Zuckerman J
Full Access

INTRODUCTION

Determining proper joint tension in reverse total shoulder arthroplasty (rTSA) can be a challenging task for shoulder surgeons. Often, this is a subjective metric learned by feel during fellowship training with no real quantitative measures of what proper tension encompasses. Tension too high can potentially lead to scapular stress fractures and limitation of range of motion (ROM), whereas tension too low may lead to instability. New technologies that detect joint load intraoperatively create the opportunity to observe rTSA joint reaction forces in a clinical setting for the first time. The purpose of this study was to observe the differences in rTSA loads in cases that utilized two different humeral liner sizes.

METHODS

Ten different surgeons performed a total of 37 rTSA cases with the same implant system. During the procedure, each surgeon reconstructed the rTSA implants to his or her own preferred tension. A wireless load sensing humeral liner trial (VERASENSE for Equinoxe, OrthoSensor, Dania Beach, FL) was used in lieu of a traditional plastic humeral liner trial to provide real-time load data to the operating surgeon during the procedure. Two humeral liner trial sizes were offered in 38mm and 42mm curvatures and were selected each case based on surgeon preference. To ensure consistent measurements between surgeons, a standardized ROM assessment consisting of four dynamic maneuvers (maximum internal to external rotation at 0°, 45°, and 90° of abduction, and a maximum flexion/extension maneuver) and three static maneuvers (arm overhead, across the body, and behind the back) was completed in each case. Deidentified load data in lbf was collected and sorted based on which size liner was selected. Differences in means for minimum and maximum load values for the four dynamic maneuvers and differences in means for the three static maneuvers were calculated using 2-tailed unpaired t-tests.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 136 - 136
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

3D preoperative planning software for anatomic and reverse total shoulder arthroplasty (ATSA and RTSA) provides additional insight for surgeons regarding implant selection and placement. Interestingly, the advent of such software has brought previously unconsidered questions to light on the optimal way to plan a case. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current glenoid implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place a glenoid implant for both ATSA and RTSA procedures. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into three cohorts based on their responses to usage of 3D preoperative planning software: high users, seldom users, and non-users. Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 131 - 131
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

The advent of CT based 3D preoperative planning software for reverse total shoulder arthroplasty (RTSA) provides surgeons with more data than ever before to prepare for a case. Interestingly, as the usage of such software has increased, further questions have appeared over the optimal way to plan and place a glenoid implant for RTSA. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current RTSA implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place a RTSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 134 - 134
1 Feb 2020
Greene A Parsons I Jones R Youderian A Byram I Papandrea R Cheung E Wright T Zuckerman J Flurin P
Full Access

INTRODUCTION

3D preoperative planning software for anatomic total shoulder arthroplasty (ATSA) provides surgeons with increased ability to visualize complex joint relationships and deformities. Interestingly, the advent of such software has seemed to create less of a consensus on the optimal way to plan an ATSA rather than more. In this study, a survey of shoulder specialists from the American Shoulder and Elbow Society (ASES) was conducted to examine thought patterns in current ATSA implant selection and placement.

METHODS

172 ASES members completed an 18-question survey on their thought process for how they select and place an ATSA glenoid implant. Data was collected using a custom online Survey Monkey survey. Surgeon answers were split into two cohorts based on number of arthroplasties performed per year: between 0–75 was considered low volume (LV), and between 75–200+ was considered high volume (HV). Data was analyzed for each cohort to examine differences in thought patterns, implant selection, and implant placement.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 23 - 23
1 Apr 2019
Greene A Hamilton M Polakovic S Mohajer N Youderian A Wright T Parsons I Saadi P Cheung E Jones R
Full Access

INTRODUCTION

Variability in placement of total shoulder arthroplasty (TSA) glenoid implants has led to the increased use of 3D CT preoperative planning software. Computer assisted surgery (CAS) offers the potential of improved accuracy in TSA while following a preoperative plan, as well as the flexibility for intraoperative adjustment during the procedure. This study compares the accuracy of implantation of reverse total shoulder arthroplasty (rTSA) glenoid implants using a CAS TSA system verses traditional non-navigated techniques in 30 cadaveric shoulders relative to a preoperative plan from 3D CT software.

METHODS

High resolution 1mm slice thickness CT scans were obtained on 30 cadaveric shoulders from 15 matched pair specimens. Each scan was segmented and the digital models were incorporated into a preoperative planning software. Five fellowship trained orthopedic shoulder specialists used this software to virtually place a rTSA glenoid implant as they deemed best fit in six cadavers each. The specimens were randomized with respect to side and split into a cohort utilizing the CAS system and a cohort utilizing conventional instrumentation, for a total of three shoulders per cohort per surgeon. A BaSO4 PEEK surrogate implant identical in geometry to the metal implant used in the preoperative plan was used in every specimen, to maintain high CT resolution while minimizing CT artifact. The surgeons were instructed to implant the rTSA implants as close to their preoperative plans as possible for both cohorts. In the CAS cohort, each surgeon used the system to register the native cadaveric bones to each respective CT, perform the TSA procedure, and implant the surrogate rTSA implant. The surgeons then performed the TSA procedure on the opposing side of the matched pair using conventional instrumentation.

Postoperatively, CT scans were repeated on each specimen and segmented to extract the digital models. The pre- and postoperative scapulae models were aligned using a best fit match algorithm, and variance between the virtual planned position of the implant and the executed surgical position of the implant was calculated [Fig 1].


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 113 - 113
1 Apr 2019
Verstraete M Conditt M Wright T Zuckerman J Youderian A Parsons I Jones R Decerce J Goodchild G Greene A Roche C
Full Access

Introduction & Aims

Over the last decade, sensor technology has proven its benefits in total knee arthroplasty, allowing the quantitative assessment of tension in the medial and lateral compartment of the tibiofemoral joint through the range of motion (VERASENSE, OrthoSensor Inc, FL, USA). In reversal total shoulder arthroplasty, it is well understood that stability is primarily controlled by the active and passive structures surrounding the articulating surfaces. At current, assessing the tension in these stabilizing structures remains however highly subjective and relies on the surgeons’ feel and experience. In an attempt to quantify this feel and address instability as a dominant cause for revision surgery, this paper introduces an intra-articular load sensor for reverse total shoulder arthroplasty (RTSA).

Method

Using the capacitive load sensing technology embedded in instrumented tibial trays, a wireless, instrumented humeral trial has been developed. The wireless communication enables real-time display of the three-dimensional load vector and load magnitude in the glenohumeral joint during component trialing in RTSA. In an in-vitro setting, this sensor was used in two reverse total shoulder arthroplasties. The resulting load vectors were captured through the range of motion while the joint was artificially tightened by adding shims to the humeral tray.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 63 - 63
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION

Preoperative planning software for anatomic total shoulder arthroplasty (ATSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in ATSA.

METHODS

CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided three implant types: a standard non-augmented glenoid component, and an 8° and 16° posterior augment wedge glenoid component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior- posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 64 - 64
1 Apr 2019
Greene A Cheung E Polakovic S Hamilton M Jones R Youderian A Wright T Saadi P Zuckerman J Flurin PH Parsons I
Full Access

INTRODUCTION

Preoperative planning software for reverse total shoulder arthroplasty (RTSA) allows surgeons to virtually perform a reconstruction based off 3D models generated from CT scans of the glenohumeral joint. While anatomical studies have defined the range of normal values for glenoid version and inclination, there is no clear consensus on glenoid component selection and position for RTSA. The purpose of this study was to examine the distribution of chosen glenoid implant as a function of glenoid wear severity, and to evaluate the inter-surgeon variability of optimal glenoid component placement in RTSA.

METHODS

CT scans from 45 patients with glenohumeral arthritis were planned by 8 fellowship trained shoulder arthroplasty specialists using a 3D preoperative planning software, planning each case for optimal implant selection and placement. The software provided four glenoid baseplate implant types: a standard non-augmented component, an 8° posterior augment wedged component, a 10° superior augment wedged component, and a combined 8° posterior and 10° superior wedged augment component. The software interface allowed the surgeons to control version, inclination, rotation, depth, anterior-posterior and superior-inferior position of the glenoid components in 1mm and 1° increments, which were recorded and compared for final implant position in each case.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 122 - 122
1 Mar 2017
Roche C Greene A Wright T Flurin P Zuckerman J Grey S
Full Access

Introduction

The clinical impact of radiolucent glenoid lines is controversial, where the presence of a radiolucent glenoid lines has been suggested to be an indicator of clinical glenoid loosening. The goal of this database analysis is to quantify and compare the pre- and post-operative outcomes of 427 patients who received a primary aTSA with one specific prosthesis and were sorted based upon the radiographic presence of a radiolucent glenoid line at latest clinical followup.

Methods

427 patients (mean age: 67.0yrs) with an average follow-up of 49.4 months was treated with aTSA for OA by 14 fellowship trained orthopaedic surgeons. Of these 427 patients, 293 had a cemented keel glenoids (avg follow-up = 50.8 months) and 134 had a cemented pegged glenoids (avg follow-up = 48.7 months). Cemented peg and keel glenoid patients were analyzed separately and also combined into 1 cohort: 288 patients (158 female, avg: 68.7 yrs; 130 male, avg: 64.9 yrs) did not have a radiolucent glenoid line (avg follow-up = 46.9 months); whereas, 139 patients (83 female, avg: 68.5 yrs; 56 male, avg: 64.6 yrs) had a radiolucent glenoid line (avg follow-up = 54.4 months). Outcomes were scored using SST, UCLA, ASES, Constant, and SPADI metrics; active ROM also measured. A two-tailed, unpaired t-test identified differences (p<0.05) in pre-operative, post-operative, and pre-to-post improvements.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 123 - 123
1 Mar 2017
Roche C Greene A Flurin P Wright T Zuckerman J Jones R
Full Access

Introduction

Humeral radiolucent lines after anatomic TSA (aTSA) have been well described; however, little clinical consequences have been attributed to them. The recent emergence of shorter humeral stems has demonstrated higher incidences of humeral radiolucencies than has been reported historically with standard length components. This large scale database analysis quantifies and compares the clinical outcomes of aTSAs with and without radiolucent humeral lines using one specific prosthesis to determine their impact on clinical outcomes.

Methodology

This is a multicenter, retrospective, case controlled radiographic and clinical review. Preoperative and postoperative data was analyzed from 671 aTSA patients with a minimum of 2 years followup. 538 of these 671 aTSA patients had full radiographic followup (80.2%) and were included in this study; these patients had an average followup of 45.3 months). 459 patients had noncemented humeral stems; whereas, 79 patients had cemented humeral stems. Radiographs were reviewed at latest follow up for humeral radiolucent lines based on the technique described by Gruen et al. Patients were evaluated and scored pre-operatively and at latest follow-up using the SST, UCLA, ASES, Constant, and SPADI scoring metrics; ROM was also recorded. A Student's two-tailed, unpaired t-test was used to identify differences in pre-operative, post-operative, and improvement in results, where p<0.05 denoted a significant difference.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 143 - 143
1 Feb 2017
Greene A Hamilton M Polakovic S Andrews R Jones R Parsons I Saadi P Cheung E Flurin P Wright T
Full Access

INTRODUCTION

As computer navigated surgery continues to progress to the forefront of orthopedic care, the application of a navigated total shoulder arthroplasty has yet to appear. However, the accuracy of these systems is debated, as well as the dilemma of placing an accurate tool in an inaccurate hand. Often times a system's accuracy is claimed or validated based on postoperative imaging, but the true positioning is difficult to verify. In this study, a navigation system was used to preoperatively plan, guide, and implant surrogate shoulder glenoid implants and fiducials in nine cadaveric shoulders. A novel method to validate the position of these implants and accuracy of the system was performed using pre and post operative high resolution CT scans, in conjunction with barium sulfate impregnated PEEK surrogate implants.

METHODS

Nine cadaveric shoulders were CT scanned with .5mm slice thickness, and the digital models were incorporated into a preoperative planning software. Five orthopedic shoulder specialists used this software to virtually place aTSA and rTSA glenoid components in two cadavers each (one cadaver was omitted due to incomplete implantation), positioning the components as they best deemed fit. Using a navigation system, each surgeon registered the native cadaveric bone to each respective CT. Each surgeon then used the navigation system to guide him or her through the total shoulder replacement, and implant the barium sulfate impregnated PEEK surrogate implants. Four cylindrical PEEK fiducials were also implanted in each scapula to help triangulate the position of the surrogate implants. Previous efforts were attempted with stainless steel alloy fiducials, but position and image accuracy were limited by CT artifact. BaSO4 PEEK provided the highest resolution on a postoperative CT with as little artifact as possible. All PEEK fiducials and surrogate implants were registered by probing points and planes with the navigation system to capture the digital position. A high resolution post operative CT scan of each specimen was obtained, and variance between the executed surgical plan and PEEK fiducials was calculated.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 7 - 7
1 May 2016
Greene A Sajadi K Wright T Flurin P Zuckerman J Stroud N
Full Access

Introduction

Reverse Total Shoulder Arthroplasty (rTSA) is currently advised against in patient populations with movement disorders, due to potential premature failure of the implants from the use of walking assistive devices. The objective of this study is to measure the amount of displacement induced by the simulated loading of axillary crutches on a rTSA assembly in a laboratory mimicking immediate postoperative conditions.

Methods

8 reverse shoulder baseplate/glenosphere assemblies (Equinoxe, Exactech, Inc) were fixated to 15 lb/ft3 density rigid polyurethane bone substitute blocks. Displacement of the assemblies in the A/P and S/I axes was measured using digital displacement indicators by applying a physiologically relevant 357N shear load parallel to the face of the glenosphere, and a nominal 50N compressive axial load perpendicular to the glenosphere. Westerhoff et al. reported in vivo shoulder loads while ambulating with axillary crutches had a maximum resultant force of 170% times the patient's bodyweight with the arm at 45.25° of abduction1. This was recreated by applying a 1435.4N compressive load (Average bodyweight of 86.1kg*170%) to a humeral liner and reverse shoulder assembly in an Instron testing apparatus at 45.25° of abduction as shown in Figure 1. The glenosphere was rotated about the humeral component through the arc of the axillary crutch swing, from −5° of extension to 30° of flexion as shown in Figure 2 for 183,876 cycles2. The number of cycles was based on number of steps taken in a day from pedometer data reported by Tudor Locke et al. for patients with movement disorders, extrapolated out to a 6 week postoperative recovery period3. A Student's one-tailed, paired t-test was used to identify whether or not significant displacement occurred, where p<0.05 denoted a significant difference.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 6 - 6
1 May 2016
Greene A Twiss T Wright T Flurin P Zuckerman J Stroud N
Full Access

Introduction

The General Social Survey estimates that 19 million Americans shoot firearms, with 10% of this population being over the age of 65. More reverse total shoulder arthroplasty (rTSA) are seeking to return to physical activity after surgery, but the effects of shooting a firearm on the fixation of a rTSA implant are unknown. This study will seek to examine the recoil effect of a firearm on a rTSA baseplate fixation, by recording the forces absorbed by a shooter and applying these forces to a rTSA implant assembly in laboratory conditions.

Methods

A total of 5 shooters over a range of heights and bodyweights fired a single action 12 gauge shotgun with 3 ounce slugs 5 times each. An accelerometer was rigidly fixated to the barrel of the firearm to record impulse values upon firing. 8 reverse shoulder baseplate/glenosphere assemblies (Equinoxe, Exactech, Inc) were fixated to 15 lb/ft3 density rigid polyurethane bone substitute blocks for drop tower testing. Displacement was measured before and after testing using digital displacement indicators by applying a physiologically relevant 357N shear load parallel to the face of the glenosphere, and a nominal 50N compressive axial load perpendicular to the glenosphere as shown in Figure 1. Measurements were taken for the S/I axis, and the sample was rotated 90 degrees for the A/P axis. The glenosphere/baseplate assemblies were loaded in a drop tower apparatus at 0° of abduction and 90° flexion to replicate the orientation of the joint seen while shooting. The drop tower utilized a 1.079kg weight set at 8” with a rubber impulse specific materil between the weight and impactor to reproduce the highest average impulse seen in shooting. A total of 50 drops were performed, to simulate two rounds of trap shooting at 25 shots each. A Student's one-tailed, paired t-test was used to identify whether or not significant loosening occurred, where p<0.05 denoted a significant difference.