Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 68 - 68
1 Apr 2018
Riedl M Koch M Freimoser F Pattappa G Zellner J Docheva D Angele P Pfeifer C
Full Access

Introduction

Human Mesenchymal stem cells (hMSCs) are a promising source for articular cartilage repair. Unfortunately, under in vitro conditions, chondrogenically differentiated hMSCs have the tendency to undergo hypertrophy similar to growth plate chondrocytes. Retinoic acid (RA) signalling plays a key role in growth plate hypertrophy. Whilst RA agonists block chondrogenesis and foster hypertrophy during later stages, RAR inverse agonists (IA) enhance chondrogenesis when applied early in culture. Therefore, we hypothesized that treatment with RAR IA will attenuate hypertrophy in chondrogenically differentiated hMSCs. To test this hypothesis, we analysed early (initial chondrogenic differentiation) and late treatment (hypertrophy stage) of hMSCs with an RAR IA.

Methods

Pellets of passage 2 hMSCs were formed in V-bottom well plates by centrifugation and pre-differentiated in a chemically defined medium containing 10ng/mL TGFß (CM+) for 14 days. Thereafter, pellets were cultured for an additional 14 days under 6 conditions: CM+, CM- (w/out TGFß), and hypertrophic medium (CM- with 25 ng/ml BMP 4, w/out dexamethasone). Each of these first three conditions was additionally supplemented with the RA receptor (RAR) inverse agonist BMS493 (BMS) at 2μM after 14 days of chondrogenic pre-differentiation. One additional BMP4 group was supplemented with BMS from the beginning of chondrogenic differentiation until day 14. The pellets were assessed for gene expression (Col 2, Col 10, Col 1 and MMP13) and histologically using dimethyl methylene blue (DMMB), alkaline phosphatase staining (ALP) and collagen II and X immunohistochemistry.