Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 92 - 92
2 Jan 2024
Fidan B Demirdis I Çiftçi E Aydinli H Kaplan O Çelebier M Boyacioglu Ö Korkusuz P Karanfil Y Korkusuz F
Full Access

Platelet Rich Plasma (PRP), either rich (L-PRP) or poor (P-PRP) of leukocytes, is frequently used as an anti-inflammatory and regenerative tool in osteoarthritis (OA). PRP contains proteins but not genes as it is derived from megakaryocytes. Proteomics but not metabolomics of PRP was recently studied. Metabolomics is a field of ‘omics’ research involved in comprehensive portrayal of the small molecules, metabolites, in the metabolome. These small molecules can be endogenous metabolites or exogenous compounds found in an organism (1). Our aim was to determine the difference between L-PRP and P-PRP.

A cross-sectional clinical study was designed in six recreational male athletes between the ages of 18 and 35 years. 3 mL P-PRP and 3 mL -LPRP was prepared from 60 mL of venous blood after treating with 9 mL of sodium citrate and centrifugation at 2.700 rpm for 10 min. Half of the prepared PRP's were frozen at −20°C for a week. Fresh and frozen samples were analyzed at the Q-TOF LC/MS device after thawing to room temperature.

Untargeted metabolomic results revealed that the metabolomic profile of the L-PRP and P-PRP were significantly different from each other. A total of 33.438 peaks were found. Statistically significant (p<0.05) peaks were uploaded to the MetaboAnalyst 5.0 platform. Exogenous out of 2.308 metabolites were eliminated and metabolites found significant for our study were subjected to pathway analysis. Steroid biosynthesis, sphingolipid metabolism and metabolism of lipid pathways were affected. In the L-PRP samples, Nicotinamide riboside (FC: 2.2), MHPG (FC: 3.0), estrone sulfate (FC: 7.5), thiamine diphosphate (FC: 2.0), leukotriene E4 (FC: 7.5), PC(18:1 (9Z)e/2:0) (FC: 9.8) and Ap4A (FC: 2.1) were higher compared to P-PRP. C24 sulfatide (FC: −11.8), 3-hexaprenyl-4,5-dihydroxybenzoic acid (FC: −2.8) metabolites were furthermore lower in P-PRP. Clinical outcomes of PRP application should consider these metabolic pathways in future studies (2).