header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 475 - 475
1 Sep 2009
Downing M Munro N Duthie R Hutchison J Ashcroft G
Full Access

Introduction: Impaction allografting is an established method for restoring deficient bone during revision arthroplasty of the hip. Graft augmentation with synthetic materials has been proposed and evaluated experimentally. Our aim was to assess clinically whether migration and wear of implants with a synthetic graft mix would be equivalent to pure allograft.

Materials and Methods: Patient inclusion criteria were: acetabular and or femoral defects from aseptically loosened primary THR undergoing cemented revision with impaction grafting; age 55–80 years; initial diagnosis of osteo arthritis; good health with reasonable daily activity level. Patients were randomized to receive either pure allograft or a 50% mixture with a porous hydroxyapatite material (Apapore60, Apatech, UK). Revision was with the Exeter stem, antibiotic Simplex cement (Stryker Howmedica Ltd), and Ogee cup (Depuy Int. Ltd., Leeds, UK). Tantalum markers were inserted into the pelvis, cup, femur, cement and graft in order to measure migration with radiostereometry (RSA). Patients received a sequence of RSA examinations up to 2 years. A total of 26 patients (18 for the femur) have been analysed.

Results: At 2 years no significant differences were seen in cup wear, or migration of the cup, femoral and pelvic graft markers. Stem migration occurred mainly at the stem cement interface. The rate of distal migration for the femoral head was greater for pure allograft in the first year (p < 0.05), however this rate reduced significantly in year two. Higher medial migration in year one was observed for the proximal medial cement mantle for allograft (p < 0.05).

Conclusions: Improved stability and normal cup wear were observed in a randomized clinical study for a synthetically augmented allograft. This agrees with experimental findings1. Longer follow up with increased patient numbers is recommended to confirm these findings.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 240 - 240
1 May 2006
Munro N Downing M Meakin J Duthie R Hutchison J Aspden R Ashcroft G
Full Access

Synthetic graft expanders have recently been developed for use in impaction grafting revision hip arthroplasty, but their true role has yet to be determined.

We performed a series of experiments to investigate the properties of one such porous hydroxyapatite material (IG-Pore, ApaTech Ltd). IG-Pore was mixed with fresh-frozen human allograft chips and impacted into composite femoral models with a similar biomechanical profile to human bone (Sawbones Europe). Exeter hip prostheses (Stryker Howmedica Ltd) were implanted with cement and each model was axially loaded for 18000 cycles at physiological levels using an Instron servohydraulic materials testing machine. Four test groups with 0%, 50%, 70% and 90% IG-Pore were used, and there were eight femora in each group.

Pre- and post-loading radiostereometric analysis was performed to characterise migration of the prosthesis. Total subsidence was measured and was separated into that occurring at the prosthesis-cement and cement-femur interfaces. Cyclical compression and expansion of the graft-containing models was measured using the Instron.

Median values (interquartile range) for total subsidence were 0.43 mm (0.28 to 0.55) for the pure allograft group, 0.31 mm (0.20 to 0.55) for the 50% IG-Pore group, 0.23 mm (0.07 to 0.34) for the 70% allograft group and 0.13 mm (0.06 to 0.18) for the 90% IG-Pore group. These differences were statistically significant (p=0.034, Kruskal-Wallis). Subsidence at the prosthesis-cement interface was also lower for IG-Pore containing models (p=0.019, Kruskal-Wallis), although there was no significant difference at the cement-femur interface. Specimens with a higher proportion of IG-Pore showed smaller cyclical movements on loading (p=0.005, ANOVA).

Higher proportions of IG-Pore do appear to reduce subsidence in a mechanical model of impaction grafting. A randomised clinical trial using RSA to compare a 50% IG-Pore/allograft mix with pure allograft is in progress to investigate the use of this material as a bone graft expander in the clinical setting.