Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 143 - 143
1 Mar 2008
Shekhman M Inkpen K Greidanus N Anglin C Hodgson A Tonetti J Garbuz D Masri B Duncan D
Full Access

Purpose: Hip resurfacing techniques utilize mechanical jigs to align a femoral guide-pin that directs implant placement. Errors in alignment may lead to premature failure. The purpose of this study was to compare femoral guide-pin placement using a computer-assisted surgical (CAS) navigation system to a currently available manual alignment device.

Methods: A computer-assisted navigation system was developed by our group. Target guide-pin position was determined for each cadaveric hip from radiographs. A guide-pin was driven into each hip using either the CAS method or a manual alignment jig (Durom; Zimmer) by a novice or expert surgeon respectively. Radiographic pin position was compared to the target and accuracy was compared between the two techniques.

Results: Guide-pin insertion trajectory using the CAS system was significantly less variable in varus/valgus alignment than the mechanical jig (2.0° SD vs. 5.5° SD; p < 0.05). Ante/retroversion variability was also lower using CAS (4.4° SD vs. 7.7° SD) as was alignment error (CAS: 2.0° ± 2.2° SD valgus vs. Durom: 3.3° ± 5.5° SD varus, p=0.17; CAS: 0.1° ± 4.6° SD anteverted; Durom 3.2° ± 7.7° SD retroverted, p=0.48) but not significantly. Both methods proved accurate in placing the pin within 2 mm from the centre of the neck axis. Procedure time was similar between the two methods

Conclusions: Computer-assisted surgical navigation significantly improves reliability of guide-pin placement. This technique may help achieve better femoral implant alignment regardless of experience and contribute to improving hip resurfacing outcomes.

Funding : Other Education Grant

Funding Parties : Zimmer/UBC Research Fund