Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 48 - 48
1 Nov 2018
Devine D Hayes J Kotsougiani D Evans C
Full Access

Bone has a remarkable capacity to heal. However, in some instances the amount of bone which is needed to heal exceeds its healing capacity. Due to reported issues with current treatments there is continued research into alternative approaches with a view to producing an off the shelf alternative to the gold standard autologous bone transplants. The current investigated the use of a chitosan/hydroxyapatite scaffold, which was used to covalently bone morphogenetic protein and vascular endothelial growth factor using a UV crosslinking process. Results indicate that the incorporation of hydroxyapatite increased the mechanical properties of the scaffold compared to chitosan alone. Furthermore, crosslinking was confirmed using swelling studies and FTIR analysis. Elisa indicated that physiological doses of BMP were released after 10 days while in vitro testing did not indicate a cytotoxic response to the scaffold. In vivo testing in a rat femoral defect model indicated the efficacy of the treatment with scaffolds containing BMP and VEGF in combination resulting in more bone in the defect compared to the scaffold alone 8 weeks post-surgery.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 201 - 201
1 Sep 2012
Devine D Arens D Burelli S Bloch HR Boure L
Full Access

The osteointegration of a new three-dimensional reticular titanium material, Trabecular Titanium™, was assessed using a bilateral cancellous (distal femur, proximal tibia) and cortical (tibia diaphysis) bone drill hole model in 18 sheep. TT is a novel Ti6Al4V material characterized by a high open porosity and composed of multi-planar regular hexagonal cells. Two 5.0 mm diameter, 12 mm long cylinders (TT1 & TT2) of two different porosities (TT1:650 μm, TT2:1250 μm) were tested and compared to two solid predicate 5.0 mm diameter, 12 mm long Ti cylinders (PT1 & PT2) coated with porous Ti (PT1: vacuum-plasma spray coating; PT2: inert-gas shielding arc spray coating).

Each implant type was surgically implanted at 4 separate locations in each sheep (16 implants per sheep). Three timepoints of 4, 16 and 52 weeks (n=6 sheep per timepoint) were used. Bone-implant interface was analyzed ex vivo by the determination of: 1) the shear strength (SS) measured during a push out test, 2) the percentage of bone in-growth (%B) using histomorphometry, 3) the bone apposition rate using fluorochrome labelling analysis and 4) the bone-implant contact using backscattered scanning electron microscopy (SEM). An ANOVA with a Bonferroni Post hoc test were used to detect differences between tested and predicate implants. P values 0.05 were considered significant.

At 4 weeks, 5 out of the 6 TT1 could be pushed out of the cortical bone (COB) samples. The remaining TT1 collapsed during testing. All TT1 could be pushed of the cancellous bone (CAB) samples. Four out of the 6 TT2 could be pushed out of CAB and of the COB samples. At 16 and 52 weeks, only one TT1 and one TT2 could be pushed out of the bone samples, the remaining implants collapsed during testing. All the PTs were successfully pushed out at all timepoints.

The mean %B of PT1 and PT2 did not significantly increase over time. For both materials, the mean %B ranged between 1.7% and 4.4% at 4 weeks and between 5.7% and 6.5% at 52 weeks. The mean %B of TT1 significantly increased over time in both COB (10.2% at 4 weeks, 46.2% at 16 weeks, 50.5% at 52 weeks) and CAB (5.8%, 23.9%, 24.3%). Similarly, the mean %B of TT2 significantly increased over time in both COB (7.8%, 48.6%, 65%) and CAB (4.5%, 24.1%, 38.6%). Bone apposition rates for the TT implants remained superior to 2 μm/day for the entire duration of the study. SEM showed an intimate bone-implant contact for all implant types at all timepoints.

At 16 and 52 weeks, histomorphometry revealed an extensive osteointegration of the TT specimens. Bone-implant interface strength was so high for the TT implants that they could not be pushed out of the bone samples. The results of this study would indicate that the TT implants provide a good scaffold for bone in-growth.