Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 101 - 101
1 Jan 2016
Vigneron L Delport H Khairul A Kobayashi T DeBoodt S
Full Access

Introduction

A full 3D postoperative analysis, i.e. a quantitative comparison between planned and postoperative positions of bone(s) and implant(s) in 3D, is necessary for a thorough assessment of the outcome of the surgery, as well as to provide information that could be used to optimize similar procedures in the future. In this work, we present a method of postoperative analysis based on a pair of X-ray images only, which reaches a level of accuracy that is comparable with the results obtained with a 3D postoperative image.

Methods

The method consists in using 3D models of bones, segmented from 3D preoperative image (e.g. CT or MRI scans), and 3D models of implant, and aligning them independently to X-rays by matching contours manually drawn on the X-rays and projected contours. The result gives the relative postoperative position of bone and implant. The method was tested on a phantom consisting of commonly available femoral knee implant on a physical model of a femur (Sawbones®). Result was compared to the optical scan, considered as ground truth, of the implanted saw bone. Two studies were performed: inter-operator (six operators), and intra-operator (5 tests). In addition, the inter-operator study was repeated while asking all the operators to use the same pre-drawn contours. The results are presented by calculating the distance (anterior/posterior, proximal/distal, medial/lateral) between the centers of gravity, and the angles (varus/valgus, flexion/extension, external/internal rotations) of the implants from the X-ray based method and the ground truth.

Results were also compared with the relative position of bone and implant extracted from a 3D CT postoperative image. Saw bone and implant were first segmented from this image. In order to determine the position of the implant, despite the metal artefacts in the CT images, the 3D model of the implant was registered on the segmented implant.

All processing, including segmentation, registration of X-rays, and measurements, was performed using Mimics Innovation Suite 17.0 ®.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 27 - 27
1 Jan 2016
Hananouchi T Giets E Ex J Delport H
Full Access

Introduction

Optimal alignment of the acetabulum cup component is crucial for good outcome of Total Hip Arthroplasty (THA). A patient-specific instrumentation (PSI) for cup alignment manufactured by 3D printing might improve cup alignment in conventional THAs with patient's lateral decubitus position. In this study, we developed PSI for cup alignment which transferred preoperatively planned cup alignment to the operation room as a linear visual reference(Figure 1), then investigated its accuracy in terms of fitting of PSI on the bony surface and angle deviation between pre- and post-operative cup alignments.

Methods

3-Dimensional bone models created from CT images of both sides of 6 cadaveric specimens were used in the current study. In the first experiment (first 3 specimens and six hips), we designed PSI to fit on the acetabular rim, and we inserted a Kirschner wire (K-wire) through PSI after PSI's fitting. In the second experiment (remaining 3 specimens and six hips), after the same steps like the first experiment were done, we reamed and finally impacted plastic cups with the visual reference of the K-wire. Using postoperative CT images taken after both experiments, we measured deviation of the K-wire placement for the first experiment, and measured deviation of the cup placement from planned cup alignment.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 35 - 35
1 Oct 2014
Hananouchi T Giets E Ex J Delport H
Full Access

Optimal alignment of the acetabular cup component is crucial for good outcome of total hip arthroplasty [THA]. Increased accuracy of implant positioning may improve clinical outcome. To achieve this, patient specific instrumentation was developed.

A patient-specific guide manufactured by 3D printing was designed to aid in positioning of the cup component with a pre-operatively defined anteversion and inclination angle. The guide fits perfectly on the acetabular rim. An alignment K-wire in a pre-operatively planned orientation is used as visual reference during cup implantation. Accuracy of the device was tested on 6 cadaveric specimens. During the experiment, cadavers were positioned for a THA procedure using a posterolateral approach. A normal-sized incision was made and approach used as in the conventional surgical procedure. The PSI was subsequently fitted onto the acetabular rim and secured into its unique position due to its patient specific design. The metallic pin was placed in a drill hole of the PSI. Post-operative CT image data of each acetabulum with the placed pin were transferred to Mimics and the 3D model was registered to the pre-operative one. The anteversion and inclination of the placed pin was calculated and compared to the pre-operatively planned orientation. The absolute difference in degrees was evaluated. A secondary test was carried out to assess the error during impaction while observing the alignment K-wire as a visual reference. In a laboratory setting, error during impaction with a visual reference of the K-wire was measured.

Deviation from planning showed to be on average 1.04° for anteversion and 2.19° for inclination. By visually aligning the impactor with this alignment K-wire, the surgeon may achieve cup placement as pre-operatively planned. The effect of the visual alignment itself was also evaluated in a separate test-rig showing minimal deviations in the same range. The alignment validation test resulted in an average deviation of 1.2° for inclination and 1.4° for anteversion between the metallic alignment K-wire used as visual reference and the metallic K-wire impacted by the test subjects. The inter-user variability was 0.9° and 0.8° for anteversion and inclination respectively. The intra-user variability was 1.6° and 1.0° for anteversion and inclination respectively. Tests per test subject were conducted in a consecutive manner.

We investigated the accuracy of two factors affecting accuracy in the cup insertion with PSI, i.e. accuracies of the errors of bony fitting and cup impaction. Since the accuracy of the major contributing factors to the overall accuracy of PSI for cup insertion with linear visual reference of a metallic K-wire was within the acceptable range of 2 to 3 degrees, we state that the PSI we have designed assists to achieve the preoperatively planned orientation of the cup and as such leads to the reduction of outliers in cup orientation. This acetabular cup orientation guide can transfer the pre-operative plan to the operating room.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 46 - 46
1 Dec 2013
Delport H Labey L De Corte R Innocenti B Sloten JV Bellemans J
Full Access

Passive knee stability is provided by the soft tissue envelope which resists abnormal motion. There is a consensus amongst orthopedic surgeons that a good outcome in TKA requires equal tension in the medial and the lateral compartment of the knee joint, as well as equal tension in the flexion and extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after standard posterior-stabilized total knee arthroplasty (PS-TKA). We hypothesized that the medial collateral ligament (MCL) and the lateral collateral ligament (LCL) will show minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to be completely reconstructed using contemporary types of PS-TKA.

Methods:

A total of 6 specimens were used to perform this in vitro cadaver test using extensometers to provide numerical values for laxity and varus-valgus tilting in the frontal plane. See Fig. 1 The test set-up.

Findings:

This study enabled a very precise measurement of varus and valgus laxity as compared with the clinical assessment which is a subjective measure. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the MCL tends to relax and the LCL remains tight. Fig. 2 Initial and maximal strain values in the MCL during valgus and varus laxity testing in different flexion angles. a: intact knee, b: replaced knee. and Fig. 3 Initial and maximal strain values in the LCL during valgus and varus laxity testing indifferent flexion angles. a: intact knee, b: replaced knee.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 284 - 284
1 Dec 2013
Delport H Labey L Sloten JV Bellemans J
Full Access

Today controversy exists whether restoration of neutral mechanical alignment should be attempted in all patients undergoing TKA. The restoration of constitutional rather than neutral mechanical alignment may in theory lead to a more physiological strain pattern in the collateral ligaments, and could therefore potentially be beneficial to patients.

It was therefore our purpose to measure collateral ligament strains during three motor tasks in the native knee and compare them with the strains noted after TKA in different postoperative alignment conditions. Six cadaver specimens were examined using a validated knee kinematics rig under physiological loading conditions. The effect of coronal malalignment was evaluated by using custom made tibial implant inserts in order to induce different alignment conditions.

The results indicated that after TKA insertion the strains in the collateral ligaments resembled best the preoperative pattern of the native knee specimens when constitutional alignment was restored. Restoration to neutral mechanical alignment was associated with greater collateral strain deviations from the native knee.

Based upon this study, we conclude that restoration of constitutional alignment during TKA leads to more physiological periarticular soft tissue strains during loaded as well as unloaded motor tasks.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 175 - 175
1 Jan 2013
Demol J Lenaerts B Leuridan S Delport H
Full Access

Introduction

Surgeons are often confronted with large amounts of bone loss during the revision of total hip prostheses. Regularly, porous metals are applied to reconstruct the missing bone. Rapid and extensive bone infiltration into the implant's pores is essential to obtain strong and durable biological fixation. Today, specialised layered manufacturing techniques provide the flexibility to produce custom-made metallic implants with a personalized external shape and a well-controlled internal network of interconnected pores. In this study, bone ingrowth in porous titanium structures that were manufactured by selective laser melting (SLM) was evaluated in an in vivo goat model.

Methods

Cylindrical Ti6Al4V constructs (Ø8mm × 14mm, porosity 75%) with or without hydroxyapatite coating were implanted in six Saanen goats. Three holes were drilled in the subchondral bone of each tibia and femur. Constructs were inserted into the holes in a press-fit manner. Resonance frequency analysis was used to measure construct stability. At 3, 6 and 9 weeks after surgery, fluorochrome labels were injected. After 6 and 12 weeks, samples were explanted. Some samples were scanned with micro-CT and subsequently sectioned for histological analysis. The others were used for pull-out tests.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2013
Gelaude F Demol J Clijmans T Delport H
Full Access

Introduction

Different classification systems for acetabular deficiencies, including AAOS and Paprosky, are commonly used. Classification of these bone defects is often performed based on Xrays or CT images. Although the amount of bone loss is rarely measured quantitatively in these images, objective and quantitative data on the degree of bone loss could facilitate correct and consistent classification. Recently, a computerized CT-based tool was presented to quantitatively asses bone loss: TrABL (Total radial Acetabular Bone Loss). This study demonstrates on an extended patient population that TrABL combined with standard classification systems provides more detailed, quantitative information on bone defects.

Methods

CT scans of 30 severe acetabular defects, classified Paprosky IIIA and IIIB, were collected and analysed with TrABL. The tool automatically calculated the total amount of bone that was missing around the acetabulum, seen from the hip's original rotation centre. Six anatomical regions were defined for which the degree of bone loss was expressed: anterosuperior, anteroinferior, inferior, posteroinferior, posterosuperior and medial.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 47 - 47
1 Sep 2012
Delport H Mulier M
Full Access

Introduction

As population grows older, and patients receive primary joint replacements at younger age, more and more patients receive a total hip prosthesis nowadays. Ten-year failure rates of revision hip replacements are estimated at 25.6%. The acetabular component is involved in over 58% of those failures. From the second revision on, the pelvic bone stock is significantly reduced and any standard device proves inadequate in the long term [Villanueva et al. 2008]. To deal with these challenges, a custom approach could prove valuable [Deboer et al. 2007].

Materials and methods

A new and innovative CT-based methodology allows creating a biomechanically justified and defect-filling personalized implant for acetabular revision surgery [Figure 1].

Bone defects are filled with patient-specific porous structures, while thin porous layers at the implant-bone interface facilitate long-term fixation. Pre-operative planning of screw positions and lengths according to patient-specific bone quality allow for optimal fixation and accurate transfer to surgery using jigs.

Implant cup orientation is anatomically analyzed for required inclination and anteversion angles. The implant is patient-specifically analyzed for mechanical integrity and interaction with the bone based upon fully individualized muscle modeling and finite element simulation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 48 - 48
1 Sep 2012
Delport H
Full Access

INTRODUCTION

The cement quantity and distribution within femoral hip resurfacings are important for implant survival. Too much cement could cause thermal bone necrosis during polymerisation. Insufficient cement and cement-implant interfacial gaps might favour mechanical loosening. Exposed cancellous bone within the implant, might facilitate debris-induced osteolysis. This study assessed the impact of the cementing technique on the cement mantle quality in hip resurfacing.

METHODS

We prepared 60 bovine condyles for a 46 mm ReCap (Biomet) resurfacing and cemented polymeric replicas of the original implant using five different techniques: low-viscosity cement filling half the implant with and without suction (LVF+/−S), medium-viscosity cement spread inside the implant (MVF), medium-viscosity cement packed on bone (Packing) and a combination of both last techniques (Comb.). Half the specimens had six anchoring holes. Specimens were CT-scanned and analyzed with validated segmentation software [1].

We assessed, with an analysis of covariance, the effect of the cementing technique (fixed factor), the presence of anchoring holes (fixed factor) and the bone density (covariate) on the cement mantle quality.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 39 - 39
1 Jun 2012
Delport H Bartels W Banks SA Sloten JVD Bellemans J
Full Access

In general TKA can be divided into two distinct groups: cruciate retaining and cruciate substituting. The cam and post of the latter system is in fact a mechanical substitution of the intricate posterior cruciate ligament. In our previous work we and many other investigators have focused on the movement of the femoral component relative to the tibial tray. Little information is available about the relative movement between the cam part of the femoral component and the post of the tibial insert. In this study we determine the distance and the changes in distance between the cam of the femoral component and the tibial post during extension, flexion at 90° and full flexion. The secondary purpose is to analyse possible differences between FBPS and MBPS TKA.

Methods

12 subjects' knees were imaged using fluoroscopy from extension over 90° to maximum kneeling flexion. The images were digitized. The 3-dimensional (3D) position and orientation of the implant components were determined using model-based shape-matching techniques, manual matching, and image-space optimization routines. The implant surface model was projected onto the geometry-corrected image, and its 3D pose was iteratively adjusted to match its silhouette with the silhouette of the subject's TKA components. The results of this shapematching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 mm to 1.0 mm for translations in the sagittal plane. Joint kinematics were determined from the 3D pose of each TKA component using the 3-1-2 Cardan angle convention. This process resulted in a distance map of the femoral and tibial surfaces, from which the minimum separations were determined for the purpose of this study between cam and post (fig1.).

Separation distances between the tibial polyethylene (PE) insert's post and the femoral prosthesis component have been calculated in three steps. First, the surface models of all three components as well as their position and orientation were extracted from the data files produced by the fluoroscopic kinematic analysis. Next, a set of 12 points were located on the post of each tibial insert (fig2.). Finally, for each point, the distance to the femoral component was quantified. For each step in this process, custom MATLAB(r) (The MathWorks(tm) Inc., Natick, MA, USA) programs were used.

For each of the 12 points on the post, a line was constructed through the point and parallel to the outward-facing local surface normal of the post. The resulting set of lines was then intersected with the femoral component model. Intersection points where lines ran “out of” the femoral component, detected by a positive dot product of the femoral component surface normal with the post surface normal (used to define the line), were discarded.

Finally, the distances between the 12 points on the post and the intersection points on each line were calculated. For each line, the smallest distance was retained as a measure of the separation between insert and femoral component. Where a line did not intersect the femoral component, the corresponding separation distance was set to infinity.

In each position, distances are measured at 6 pairs of points. Two indices of asymmetry are analysed:

The absolute difference between both measurements within a pair. Perfect symmetry is present when this absolute difference equals zero.

The proportion of pairs where one of both measurements equals infinity. Indeed, this situation refers to the presence of ‘extreme’ asymmetry.

A linear model for repeated measures is used to analyse the absolute differences as a function of the between-subjects factor condition (mobile bearing or fixed bearing) and the within-subject factors position (4 levels) and pair (6 levels). More specifically, a direct likelihood approach is adopted using a compound symmetric covariance matrix.

Results

There is a significant difference in absolute difference between the fixed and mobile bearing condition (p=0.046). On average, the absolute difference is higher in the fixed bearing condition, 1.75 (95%CI: 1.39;2.11) vs 1.20 (95%CI:0.78;1.62). (fig2.).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 40 - 40
1 Jun 2012
Delport H Mulier M Gelaude F Clijmans T
Full Access

The number of joint revision surgeries is rising, and the complexity of the cases is increasing. In 58% of the revision cases, the acetabular component has to be revised. For these indications, literature decision schemes [Paprosky 2005] point at custom pre-shaped implants. Any standard device would prove either unfeasible during surgery or inadequate in the short term. Studies show that custom-made triflanged implants can be a durable solution with good clinical results. However, the number of cases reported is few confirming that the device is not in widespread use.

Case Report

A patient, female 50 yrs old, diagnosed having a pseudotumor after Resurfacing Arthroplasty for osteo-arthritis of the left hip joint. The revision also failed after 1 y and she developed a pelvic discontinuity. X-ray and Ct scans were taken and sent to a specialized implant manufacturer [Mobelife, Leuven, Belgium]. The novel process of patient-specific implant design comprises three highly automated steps.

In the first step, advanced 3D image processing presented the bony structures and implant components. Analysis showed that anterior column was missing, while the posterior column was degraded and fractured. The acetabular defect was diagnosed being Paprosky 3B. The former acetabular component migrated in posterolateral direction resulting in luxation of the joint. The reconstruction proposal showed the missing bone stock and anatomical joint location.

In the second step, a triflanged custom acetabular metal backing implant was proposed. The bone defect (35ml) is filled with a patient-specific porous structure which is rigidly connected to a solid patient-specific plate. The proposed implant shape is determined taking into account surgical window and surrounding soft tissues. Cup orientation is anatomically analyzed for inclination and anteversion. A cemented liner fixation was preferred (Biomet Advantage 48mm). Screw positions and lengths are pre-operatively planned depending on bone quality, and transferred into surgery using jig guiding technology (Materialise NV, Leuven, Belgium).

In the third step, the implant design was evaluated in a fully patient-specific manner in dedicated engineering (FEA) software. Using the novel automated CT-based methodology, patient-specific bone quality and thickness, as well as individualised muscle attachments and muscle and joint forces were included in the evaluation.

Implants and jig were produced with Additive Manufacturing techniques under ISO 13485 certification, using respectively Selective Laser Melting (SLM) techniques [Kruth 2005] in medical grade Ti6Al4V material, and the Selective Laser Sintering technique using medical grade epoxy monomer. The parts were cleaned ultrasonically, and quality control was performed by optical scanning [Atos2 scanning device, GOM Intl. AG, Wilden, Switzerland]. Sterilization is performed in the hospital.

CONCLUSION

A unique combination of advanced 3D planning, patient-specific designed and evaluated implants and drill guides is presented. This paper illustrates, by means of a clinical case, the novel tools and devices that are able to turn reconstruction of complex acetabular deficiencies into a reliable procedure.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 307 - 307
1 May 2010
Padnis A Whitwell D Delport H Singhal K
Full Access

Aim: The purpose of the study was to compare the position of the femoral guide wire for during hip resurfacing, computer navigation and an alignment device.

Materials and Methods: 26 cadaver specimens divided in 3 randomly selected groups and 25 patients were used to evaluate the position of the femoral guide wire in resurfacing hip arthroplasty. In two groups of cadavers the Computer Navigation was used to register and template the position of the implant. The position of the guide wire was compared to the one achieved using the alignment device. In the third group of cadaver specimens only the alignment device was used to implant the guide wire. Version was determined from the transversely cut sections of the cadaver specimens. Pre operative and post operative radiographs were used for analysis. In the patient group after registration and templating the guide wire was passed using the alignment device.

Results: There was no notching of the superior femoral neck in either of the groups. The mean and standard deviation of the anatomic neck-shaft angles was 124.91? ? 14.25?. The wire-shaft angle in the Navigation group was 131.46? ? 5.27? and in the alignment device group 134.08? ? 3.80?. In the navigation group the wire was in 0.85? ? 2.15? of retroversion as compared to 1.38? ? 4.19? of anteversion in Jig group. The position of the wires at the narrowest cross section of the femoral neck is shown in figure. The wire shaft angle as per navigation was 134.44(±5.55) as compared to 134.74 (±5.11).

Conclusion: The alignment device consistently positioned the wire more valgus and anteverted than Computer aided navigation. In all cases, the wire position was well within acceptable limits. Computer aided navigation does not seem to offer distinct advantages in resurfacing hip replacements.