Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 102 - 102
1 Jan 2017
Russo A Bianchi M Sartori M Parrilli A Panseri S Ortolani A Boi M Salter D Maltarello M Giavaresi G Fini M Dediu V Tampieri A Marcacci M
Full Access

A critical bone defect may be more frequently the consequence of a trauma, especially when a fracture occurs with wide exposure, but also of an infection, of a neoplasm or congenital deformities. This defect needs to be treated in order to restore the limb function. The treatments most commonly performed are represented by implantation of autologous or homologous bone, vascularized fibular grafting with autologous or use of external fixators; all these treatments are characterized by several limitations.

Nowadays bone tissue engineering is looking forward new solutions: magnetic scaffolds have recently attracted significant attention. These scaffolds can improve bone formation by acting as a “fixed station” able to accumulate/release targeted growth factors and other soluble mediators in the defect area under the influence of an external magnetic field. Further, magnetic scaffolds are envisaged to improve implant fixation when compared to not-magnetic implants.

We performed a series of experimental studies to evaluate bone regeneration in rabbit femoral condyle defect by implanting hydroxyapatite (HA), polycaprolactone (PCL) and collagen/HA hybrid scaffolds in combination with permanent magnets.

Our results showed that ostetoconductive properties of the scaffolds are well preserved despite the presence of a magnetic component. Interestingly, we noticed that, using bio-resorbable collagen/HA magnetic scaffolds, under the effect of the static magnetic field generated by the permanent magnet, the reorganization of the magnetized collagen fibers produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. Only partial healing of the defect was seen within the not magnetic control groups.

Magnetic scaffolds developed open new perspectives on the possibility to exploiting magnetic forces to improve implant fixation, stimulate bone formation and control the bone morphology of regenerated bone by synergically combining static magnetic fields and magnetized biomaterials. Moreover magnetic forces can be exploited to guide targeted drug delivery of growth factors functionalized with nanoparticles.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 165 - 165
1 Dec 2013
Russo A Panseri S Shelyakova T Sandri M Ortolani A Meikle S Lacey J Tampieri A Dediu V Santin M Marcacci M
Full Access

Introduction

Diaphyseal bone defect represents a significant problem for orthopaedic surgeons and patients. Bone is a complex tissue whose structure and function depend strictly on ultrastructural organization of its components: cells, organic (extracellular matrix, ECM) and inorganic components. The purpose of this study was to evaluate bone regeneration in a critical diaphyseal defect treated by implantation of a magnetic scaffold fixed by hybrid system (magnetic and mechanical), supplied through nanoparticle-magnetic (MNP) functionalized with Vascular Endothelial-Growth-Factor-(VEGF) and magnetic-guiding.

Methods

A critical long bone defect was created in 8 sheep metatarsus diaphysis: it was 20.0 mm in length; the medullary canal was reamed till 8.00 mm of inner diameter. Then a 8.00 mm diameter magnetic rod was fitted into proximal medullary canal (10 mm in length).

After that a scaffold made of Hydroxyapatite (outer diameter 17.00 mm) that incorporates magnetite (HA/Mgn 90/10) was implanted to fill critical long bone defect. A magnetic rod (6.00 mm diameter) was firmly incorporated at proximal side into the scaffold. Both magnets had 10 mm length. To give stability to the complex bone-scaffold-bone a plate was used as a bridge; it was fixed proximally by 2 screws and distally by 3 screws.

Scaffolds biocompatibility was previously assessed in vitro using human osteoblast-like cells. Magnetic forces through scaffold were calculated by finite element software (COMSOL Multiphysics, AC/DC Model).

One week after surgery, magnetic nanoparticles functionalized with VEGF were injected at the mid portion of the scaffold using a cutaneous marker positioned during surgery as reference point in 4 sheep; other sheep were used as control group. After sixteen weeks, sheep were sacrificed to analyze metatarsi. Macroscopical, radiological and microCT examinations were performed.