Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 92 - 92
1 Feb 2017
Day J MacDonald D Kraay M Rimnac C Williams G Abboud J Kurtz S
Full Access

Utilization of reverse total shoulder arthroplasty (RTSA) has steadily increased since its 2003 introduction in the American market. Although RTSA was originally indicated for elderly, low demand patients, it is now being increasingly used to treat rotator cuff arthropathy, humeral fractures, neoplasms and failed total and hemi shoulder arthroplasty. There is, therefore, a growing interest in bearing surface wear of RTSA polyethylene humeral liners. In the current study, we examined humeral liners retrieved as part of an IRB approved study to determine the amount of bearing surface wear. We hypothesized that wear of the bearing surface by intentional contact with the glenosphere (mode I) would be minor compared to that produced by scapular notching and impingement of the humeral liner (mode II).

Twenty-three retrieved humeral liners were retrieved at revision surgery after an average of 1.5 years implantation time. The average age at implantation was 68 years (range 50–85). Shoulders were revised for loosening (7), instability (6), infection (6), pain (2), and other/unknown reasons (2). The liners were scanned using microCT at a resolution of 50 µm and then registered against unworn surfaces to estimate the bearing surface wear depth. The depth of surface penetration due to impingement of the liner with surrounding structures was measured and the location of the deepest penetration was noted.

Mode I wear of the bearing surface was detectable for five of the retrieved liners. The penetration depth was 100 µm or less for four of the liners and approximately 250 microns for the fifth liner. It was noted that the liners with discernable mode I wear were those with longer implantation times (average 2.4 years). Material loss and abrasion of the rim due to mode II wear was noted with measurable penetration in 18 of the liners. Mode II wear penetrated to the bearing surface in 11 liners. It was generally noted that volumetric material loss was dominated by mode II wear (Figure 1).

In this study of short to medium term retrieved RTSA humeral liners, mode I wear of the bearing surface was a minor source of material loss. Mode II wear due to scapular notching or impingement of the rim was the dominant source of volumetric wear. This is in agreement with a previous study that we have performed on a smaller cohort of seven liners. It is noteworthy that we were able to detect measurable mode I wear for liners with moderate implantation times. The quantity of bearing surface wear that will be seen in long term retrievals remains unknown at this time.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 91 - 91
1 Feb 2017
Baykal D Day J Underwood R
Full Access

In the retrieval analysis of explanted hip joints, the estimation of wear volume and visualization of wear pattern are commonly used to evaluate in-vivo performance. While many studies report wear volumes from explanted hips, it is important to understand the limitations of these estimates including the sources and magnitude of uncertainty of the reported results. This study builds on a previous uncertainty analysis by Carmignato et al. to quantify the magnitude of uncertainty caused by the assumption that the as-manufactured shape of an explanted hip component is a perfect sphere.

Synthetic data sets representing idealized measurements of spheroidal explants (prolate, oblate and pinched) with a nominal diameter of 50 mm were generated. These data sets represent the shape and magnitude of form deviations observed for explanted hip components (Figure 1). Data were simulated for either unworn components or those with a known volume and magnitude of wear simulated to represent 5 µm penetration of a 49.90 mm femoral head into an acetabular cup (Table 1). The volume of wear and wear pattern were estimated using a custom Matlab script developed for analysis of metrology data from explanted hip joints. This script fits a least squares sphere to data points in unworn, as manufactured regions of the surface to estimate the as-manufactured shape of the component. The diameter of the best fit sphere, and wear volume were compared to the known wear depths and volumes from the synthetic datasets.

The results showed that the Matlab script estimated a wear volume of up to 1.4 mm3 for an unworn cup with a radial deviation of 10 µm. The maximum error of 13.3 mm3 was for a pinched cup with wear at the pole. The complete results are shown in Table 2.

In some cases with aspherical form deviations, the least squares sphere fitted to the synthetic data was displaced in the Z direction with respect to the origin of the spheroid and the radius of the least squares sphere was outside the range of the principal radii of the spheroid. For instance, in case 5, the center was shifted 22 µm vertically from the mathematical center.

The results from this study show that the magnitude of uncertainty due to form deviations on wear volume varies depending on the shape and magnitude of the form deviations and in some cases was greater than 10 mm3. A further important finding is that in some instances, the diameter and center of the least squares sphere fitted to the unworn regions may not be consistent with the mathematical radius and center of the synthetic data. This may have important implications for the “reverse engineering” of the as-manufactured dimensions from worn explanted hip joints.

Please contact authors directly for the figure:

Figure 1 Graphical depiction of a) synthetic data set, b) deviation map of a hemispherical acetabular cup with simulated wear, c) deviation map of a prolate spheroid with simulated wear at rim with color bar set to ±5 microns, d) deviation map of pinched ellipsoid with simulated wear at 45 degrees from pole.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 128 - 128
1 May 2016
Wernle J Bischoff J Day J
Full Access

Introduction

Comprehensive research and retrieval analyses of metal on metal / metal on polyethylene hip fretting and corrosion have been reported. Design choices such as modularity, material couples, geometry and offsets, as well as surgical variability and patient sensitivity have been cited as factors contributing to revision. Findings are informing new designs, surgical techniques and patient testing. However, similar efforts have not been performed on the shoulder. Do reduced joint reaction forces imply lower risk of fretting and corrosion? In this study we designed an accelerated corrosion fatigue (ACF) test specific for the shoulder to allow for evaluation of varying designs, and compared results to a reported shoulder retrieval study [Day ORS 2015].

Methods

Anatomic configuration and reverse shoulder ACF tests were developed with loads and orientations determined from instrumented shoulder data and reported literature. Scaled loads of 1480 N and 962 N were applied to anatomic (Fig 1.A) and reverse (Fig 1.B) prostheses, respectively (n=5 each, with additional assembly control), in potential worse case loading directions (α=25°, β=20°: anatomic; α=0°, β=0°: reverse), at 5 Hz for 3.0 Mc with R=0.1. Test environment included 0.9% NaCl solution at elevated temperature (50° C) and a decreased pH (3.5). Mass, roughness (Ra) and taper damage (modified Goldberg scoring system) measures were taken before and after testing. Taper connections were assembled at impact loads of 3600 N +/− 20% based on cadaveric studies. Goldberg scores for 79 humeral heads and 61 stems from an IRB approved collection served as the comparator.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 26 - 26
1 May 2016
Hanzlik J Day J Kurtz S Verdonschot N Janssen D
Full Access

Introduction

Initial large-scale clinical studies of porous tantalum implants have been generally promising with well-fixed implants and few cases of loosening [1–3]. An initial retrieval study suggests increased bone ingrowth in a modular tibial tray design compared to the monoblock design [4]. Since micromotion at the bone-implant interface is known to influence bone ingrowth [5], the goal of this study was to determine the effect of implant design, bone quality and activity type on micromotion at the bone-implant interface, through FE modeling.

Patients & Methods

Our case-specific FE model of bone was created from CT data (68 year-old female, right tibia, Fig-1). Isotropic properties of cortical and trabecular bone were derived from the calibrated CT data. Modular and monoblock porous tantalum tibial implants were virtually placed in the tibia following surgical guidelines. All models parts were 3D meshed with 4-noded tetrahedral elements (MSC.MARC-Mentat 2013, MSC Software Corporation, USA). Frictional contact was applied to the bone-tantalum interface (µ=0.88) and UHWMPE-Femoral condyle interface (µ=0.05) with all other interfaces bonded. Loading was applied to simulate walking, standing up and descending stairs. For each activity, a full load cycle [6] was applied to the femoral condyles in incremental steps. The direction and magnitude of micromotions were calculated by tracking the motions of nodes of the bone, projected onto the tibial tray. Micromotions were calculated parallel to the implant surface (shear), and perpendicularly (tensile). We report the maximum (resultant) micromotion that occurred during a cycle of each activity. The bone properties were varied to represent a range in BMD (−30%BMD, Norm, +30%BMD). We compared design type, bone quality and activity type considering micromotion below 40 µm to be favorable for bone ingrowth [5].


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 118 - 118
1 Jan 2016
Kocagoz S Underwood RJ Baykal D MacDonald D Day J Kurtz S
Full Access

Introduction

In total joint replacement devices, material loss from the taper junctions is a clinical concern. Previous studies of explanted orthopedic devices have relied on visual scoring methods to quantify the fretting-corrosion damage on the component interfaces. Previous research has shown that visual fretting-corrosion evaluation is correlated to the volume of material loss [1], but scoring is semi-qualitative and does not provide a quantitative measure of the amount of material removed from the surface. The purpose of this study was to develop and validate a quantitative method for measuring the volume of material lost from the surfaces of explanted devices at the taper-trunnion junction.

Methods

10 new exemplar taper adapter sleeves (Ceramtec, Plochingen, Germany) were used for method validation. By using exemplar devices we were able to create clinically realistic taper damage in a controlled and repeatable manner using machining tools. Taper surfaces were measured before and after in vitro material removal using a roundness machine (Talyrond 585, Taylor Hobson, UK). Axial traces were measured on each taper surface using a diamond stylus. The mass of artificially removed material was also measured gravimetrically using a microgram balance (Sartorius, CPA225D, accuracy = ± 0.00003g).

Surface profiles were analyzed using a custom MatLab script and Talymap software was used to provide 3D visualizations of the pattern of material loss. Calculated volumetric material loss was compared to the gravimetric value. A sensitivity analysis was conducted to determine the optimum number of traces to characterize the material loss from taper junctions.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 108 - 108
1 Jan 2016
Day J MacDonald D Arnholt C Williams G Getz C Kraay M Rimnac C Kurtz S
Full Access

INTRODUCTION

Mechanically assisted crevice corrosion of taper interfaces was raised as a concern in total hip arthroplasty (THA) approximately 20 years ago (Gilbert 1993). In total shoulder replacement, however, comparatively little is known about the prevalence of fretting assisted crevice corrosion or the biomechanical and patient factors that influence this phenomenon. Given the comparatively lower loading experienced in the shoulder compared to the hip, we asked: (1) What is the prevalence of fretting assisted corrosion in modular total shoulder replacements, and (2) What patient and implant factors are associated with corrosion?

METHODS

Modular components were collected from 48 revision shoulder arthroplasties as part of a multi-center, IRB approved retrieval program. For anatomic shoulders, this included 40 humeral heads, 32 stems and four taper adapters from seven manufacturers. For reverse shoulders, there were eight complete sets of retrieved components from three manufacturers. The components were predominantly revised for instability, loosening and pain. Anatomical shoulders were implanted for an average of 3.1 years (st dev 3.8; range 0.1–14.5). Reverse shoulders were implanted for an average of 2.2 years (st dev 0.7; range 1.3–3.3). Modular components were disassembled and examined for taper damage. The modular junctions were scored for fretting corrosion using a semi-quantitative four-point scoring system adapted from Goldberg, et al. (Goldberg, 2002, Higgs 2013). The scoring system criteria was adapted from Goldberg and Higgs which is comprised of a one to four grading system (with one indicating little-to-no fretting/corrosion and four indicating extensive fretting/corrosion). The component alloy composition was determined using the manufacturer's laser markings and verified by x-ray fluorescence. Patient age, gender, hand dominance, alloy, flexural rigidity of the trunnion and taper geometry were assessed independently as predictors for fretting corrosion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2016
Hanzlik J Day J Levine HB Klein GR Hartzband M Parvizi J Kraay M Rimnac C Kurtz S
Full Access

Introduction

A variety of porous coatings and substrates have been used to obtain fixation at the bone-implant interface. Clinical studies of porous tantalum, have shown radiographically well-fixed implants with limited cases of loosening. However, there has been limited retrieval analysis of porous tantalum hip implants. The purpose of this study was to investigate factors affecting bone ingrowth into porous tantalum hip implants.

Methods

126 porous tantalum acetabular shells and 7 femoral stems, were collected under an IRB-approved multicenter retrieval program. Acetabular shells that were grossly loose, cemented or complex revisions were excluded. Shells with visible bone on the surface were chosen. 20 acetabular shells (10 primary) and all femoral stems were dehydrated, embedded, sectioned, polished and bSEM imaged (Figure-1). Main shell revision reasons were infection (n=10,50%), femoral loosening (n=3,15%) and instability (n=3,15%). Analyzed implants were implanted for 2.3±1.7 years (shells) and 0.3±0.3 years (stems). Eight slices per shell and 5–7 slices per stem were analyzed. The analysis included bone area/pore area (BA/PA), BA/PA zonal depth analysis, extent of ingrowth and maximum depth of bone ingrowth. BA/PA zone depths were: Zone-1 (0–500um), Zone-2 (500–1000um) and Zone-3 (1000um-full depth). Nonparametric statistical tests investigated differences in bone measurements by location within an implant and implant type (Friedman's Variance and Kruskal-Wallis). Post-hoc Dunn tests were completed for subsequent pairwise comparisons. Spearman's rank correlation identified correlations between bone measurements and patient related variables (implantation time, age, height, weight, UCLA Activity Score). Statistical analyses were performed using PASW Statistics package.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 109 - 109
1 Jan 2016
Day J McCloskey R Rimnac C Kraay M Williams G Abboud J Kurtz S
Full Access

INTRODUCTION

Retrieval analysis is an important aspect of medical device development. Examination of retrieved devices allows device developers to close the design loop, understand the performance of devices, and validate assumptions made and methods used during preclinical testing. We provide an overview of the implant retrieval analysis performed at the Implant Research Center at Drexel University on reverse total shoulder systems retrieved after short to medium term implantation.

METHODS

We have examined 18 reverse total shoulders, retrieved at revision surgery after short to mid-term implantation (average 1.4 years, maximum 3.3 years). The average age at revision was 71 years old (st dev 11 years). Our evaluations included analysis of glenosphere bearing surface damage, evaluation of tribocorrosion at the modular junctions, visual assessment of polyethylene humeral bearing surface damage, quantitative analysis of polyethylene wear.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 132 - 132
1 Jan 2016
MacDonald D Kurtz SM Kocagoz S Hanzlik J Underwood RJ Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Day J Rimnac C
Full Access

Introduction

Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA?

Methods

100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 108 - 108
1 Mar 2013
Higgs G Kurtz S Hanzlik J MacDonald D Kane WM Day J Klein GR Parvizi J Mont M Kraay M Martell J Gilbert J Rimnac C
Full Access

Introduction

Wear debris generation in metal-on-metal (MOM) total hip arthroplasty (THA) has emerged as a compelling issue. In the UK, clinically significant fretting corrosion was reported at head-taper junctions of MOM hip prostheses from a single manufacturer (Langton 2011). This study characterizes the prevalence of fretting and corrosion at various modular interfaces in retrieved MOM THA systems used in the United States.

Methods and Materials

106 MOM bearing systems were collected between 2003 and 2012 in an NIH-supported, multi-institutional retrieval program. From this collection, 88 modular MOM THA devices were identified, yielding 76 heads and 31 stems (22 modular necks) of 7 different bearing designs (5 manufacturers) for analysis. 10 modular CoCr acetabular liners and 5 corresponding acetabular shells were also examined. Mean age at implantation was 58 years (range, 30–85 years) and implantation time averaged 2.2 ± 1.8 years (range, 0–11.0 years). The predominant revision reason was loosening (n=52). Explants were cleaned and scored at the head taper, stem taper, proximal and distal neck tapers (for modular necks), liner, and shell interfaces in accordance with the semi-quantitative method of Goldberg et al. (2002).


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 304 - 304
1 Jul 2008
Ong K Kurtz S Day J Manley M Rushton N Field R
Full Access

There has been renewed interest in metal-on-metal bearings as hip resurfacing components for treatment in young, active patients. This study examines the effects of fixation (cemented or uncemented heads) and bone-implant interface conditions (stem-bone and head-bone) on the biomechanics of the Birmingham hip resurfacing (BHR) arthroplasty, using high resolution, 3-d computational models of the bilateral pelvis from a 45-year-old donor. Femoral bone stress and strain in the natural and BHR hips were compared. Bone remodelling stimuli were also determined for the BHR hips using changes in strain energy. Proximal femoral bone stress and strain were non-physiological when the BHR femoral component was fixed to bone. The reduction of strain energy within the femoral head was of sufficient magnitude to invoke early bone resorption. Less reduction of stress was demonstrated when the BHR femoral component was completely debonded from bone. Bone apposition around the distal stem was predicted based on the stress and strain transfer through the stem. Femoral stress or strain patterns were not affected by the type of fixation medium used (cemented vs. Uncemented). Analysis of proximal stress and strain shielding in the BHR arthroplasty provides a plausible mechanism for overall structural weakening due to loss of bony support. It is postulated that the proximal bone resorption and distal bone formation may progress to neck thinning as increasing stress and strain transfer occurs through the stem. This may be further exacerbated by additional proximal bone loss through avascular necrosis. Medium term retrieval specimens have shown bone remodelling that is consistent with our results. It is unclear if the clinical consequences of neck thinning will become more evident in longer-term follow-ups of the BHR.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 257 - 257
1 Mar 2003
Kiely N Younis U Day J Meadows T
Full Access

The results of the Ferguson medial open reduction of the hip for DDH were reviewed to determine the complications, re-operation rate, clinical and radiological outcome. Notes were reviewed for 75 cases, of which 5 were bilateral. X-rays were available for 69 hips and were analysed for Acetabular index (AI) and Centre Edge (CE) angles of the operated and unaffected hips. The hips were assessed for avascular necrosis by the method of Kalamchi and MacEwan and were graded according to Severin.

The mean age at operation was 11.8 months (range 3-23, SD 4.42, mode 11). The mean clinical follow up was 65.1 months (range 4-148, SD 33.4). The mean radiological follow up was 58.2 months (range 3 – 131, SD 31). No further surgical procedure was required for 60 hips (75%). Of the remainder, a Salter osteotomy was performed for 8 hips, of which 6 had additional procedures. 8 hips required a femoral osteotomy, 2 an Arthrogram and one a triple pelvic osteotomy.

The AI improved following surgery, with a rate of increase double that for the unaffected side. The mean centre edge of the operated side was 6 degrees less than the unaffected side. Tables 2 and 3 show that the majority of hips had no avascular necrosis and a good radiological outcome. The results compare favourably with the literature. The conclusion is that the Ferguson medial open reduction has good long-term results with low rates of avascular necrosis.