The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped tricalcium phosphate (PLGA-SrTCP) scaffold and evaluate in an in vitro co culture study containing osteoporotic donor cells. PLGA, PLGA TCP, and PLGA SrTCP scaffolds were produced using Fused Filament Fabrication (FFF). A four-group 35-day cell culture study was carried out using human bone marrow derived mesenchymal stem cells (hMSCs) from osteoporotic and control donors (monoculture) and hMSCs & human monocytes (hMCs) (Co culture). Outcome measures were biochemical assays, PCR, and cell imaging. Cells were cultured on scaffolds that had been pre-degraded for six weeks at 47°C prior to drying and gamma sterilisation.Introduction
Method
Restoration of native Coronal Plane Alignment of the Knee (CPAK) phenotype is a strategy suggested to achieve better satisfaction. The aim of this study was to investigate the influence of changes in CPAK classification on patient-reported outcome measures (PROMs) and survivorship in a large cohort of manual mechanically aligned (MA) cemented TKAs. A retrospective analysis of 1062 consecutive cemented TKAs using MA philosophy at a single institution. Pre- and post-operative hip-knee-ankle radiographs were classified using the CPAK classification. Oxford Knee Score (OKS) and patient satisfaction (4-point-Likert scale) were collected prospectively. Implant survival data was obtained from our national arthroplasty database. We compared the outcomes of patients who maintained or changed their CPAK classification following TKA. Satisfaction was analysed using chi-square test, and OKS was analysed using Mann-Whitney test. Pre-operatively, most patients were CPAK type-I (38.8%). 85.5% of patients changed their CPAK type post-operatively, with CPAK type-V observed in 41.2% of these. Significantly better satisfaction (p=0.033) and OKS (p=0.021) were observed at one-year follow-up in patients who changed CPAK type, although the difference was below OKS minimally important clinical difference. There was no difference in satisfaction (p=0.73) and OKS (p=0.26) at one year between CPAK-V and non-V classifications. Post-operative CPAK type had no correlation with satisfaction and OKS. 12 TKAs (1.1%) were revised within 10 years (3 septic). In this large cohort of MA-TKA, excellent survivorship was observed at 10 years, with no demonstrable difference in outcome related to the final CPAK phenotype or change in phenotype.
A ceramic-on-ceramic hip resurfacing implant (cHRA) was developed and introduced in an MHRA-approved clinical investigation to provide a non metallic alternative hip resurfacing product. This study aimed to examine function and physical activity levels of patients with a cHRA implant using subjective and objective measures both before and 12 months following surgery in comparison with age and gender matched healthy controls. Eighty-two unilateral cHRA patients consented to this study as part of a larger prospective, non-randomised, clinical investigation. In addition to their patient reported outcome measures (PROMs), self- reported measures of physical activity levels and gait analysis were undertaken both pre- operatively (1.5 weeks) and post operatively (52 weeks). This data was then compared to data from a group of 43 age gender and BMI matched group of healthy controls. Kinetics and kinematics were recorded using an instrumented treadmill and 3D Motion Capture. Statistical parametric mapping was used for analysis. cHRA improved the median Harris Hip Score from 63 to 100, Oxford Hip score from 27 to 48 and the MET from 5.7 to 10.3. cHRA improved top walking speed (5.75km vs 7.27km/hr), achieved a more symmetrical ground reaction force profile, (Symmetry Index value: 10.6% vs 0.9%) and increased hip range of motion (ROM) (31.7° vs 45.9°). Postoperative data was not statistically distinguishable from the healthy controls in any domain. This gait study sought to document the function of a novel ceramic hip resurfacing, using those features of gait commonly used to describe the shortcomings of hip arthroplasty. These features were captured before and 12 months following surgery. Preoperatively the gait patterns were typical for OA patients, while at 1 year postoperatively, this selected group of patients had gait patterns that were hard to distinguish from healthy controls despite an extended posterior approach. Applications for regulatory approval have been submitted.
Developmental dysplasia of the hip (DDH) can be managed through a variety of different surgical approaches from closed reduction to simple tenotomies of the adductors and through to osteotomies of the femur and pelvis. The rate of redislocation following open reduction for the treatment of DDH may be affected by the number of intraoperative surgeons. We performed a retrospective cohort analysis of 109 patients who underwent open reduction with or without bony osteotomies as a primary intervention between 2013 and 2023. We measured the number of redislocations and number of operating surgeons (either 1 or 2 operating surgeons) to assess for any correlation. 109 patients were identified and corresponded to 121 primary hip operations, the mean age at operation was 82.2 months (range 6 to 739 months). During the 10-year period 7 hip redislocations were identified.Introduction
Materials and methods
Deltoid ligament reconstruction (DLR) is an important factor in the consideration of pes planus deformity. There is little evidence in the literature determining whether DLR could mitigate the risk of patients acquiring flat foot postoperatively following deltoid ligament injury. Our objective was to establish if there was a difference in pes planus deformity in patients who underwent DLR during their ankle fracture fixation compared to those who did not.Introduction
Aim
Patient education programmes prior to hip and knee arthroplasty reduce anxiety and create realistic expectations. While traditionally delivered in-person, the Covid-19 pandemic has necessitated change to remote delivery. We describe a ‘Virtual Joint School’ (VJS) model introduced at Ysbyty Gwynedd, and present patient feedback to it. Eligible patients first viewed online educational videos created by our Multi-Disciplinary Team (MDT); and then attended an interactive virtual session where knowledge was reinforced. Each session was attended by 8–10 patients along with a relative/friend; and was hosted by the MDT consisting of nurses, physiotherapists, occupational therapists, and a former patient who provided personal insight. Feedback on the VJS was obtained prospectively using an electronic questionnaire. From July 2022 to February 2023, 267 patients attended the VJS; of which 117 (44%) responded to the questionnaire. Among them, 87% found the pre-learning videos helpful and comprehensible, 92% felt their concerns were adequately addressed, 96% felt they had sufficient opportunity to ask questions and 96% were happy with the level of confidentiality involved. While 83% felt they received sufficient support from the health board to access the virtual session, 63% also took support from family/friends to attend it. Only 15% felt that they would have preferred a face-to-face format. Finally, by having ‘virtual’ sessions, each patient saved, on average, 38 miles and 62 minutes travel (10,070 miles and 274 hours saved for 267 patients). Based on the overwhelmingly positive feedback, we recommend implementation of such ‘Virtual Joint Schools’ at other arthroplasty centres as well.
Osteoporotic fractures tend to be more challenging than fractures in healthy bone and the efficacy of metal screw fixation decreases with decreasing bone mineral density making it more difficult for such screws to gain purchase. This leads to increased complication rates such as malunion, non-union and implant failure (1). Bioresorbable polymer devices have seen clinical success in fracture fixation and are a promising alternative for metallic devices but are rarely used in the osteoporotic population. To address this, we are developing a system that may allow osteoporotic patients to avail of bioresorbable devices (2) but it is important to establish if patients have any reservations about having a plastic resorbable device instead of a metal one. Therefore the aim of this study was to explore the acceptability of bioresorbable fracture fixation devices to people with osteoporosis. A cross sectional descriptive study was conducted in a UK wide population using convenience sampling. An online survey comprising nine survey questions and nine demographic questions was developed in Microsoft Teams and tested for face validity in a small pilot study (n=6). Following amendments and ethical approval, the survey was distributed by the Royal Osteoporosis Society on their website and social media platforms. People were invited to take part if they lived in the UK, were over 18 years old and had been diagnosed with osteoporosis. The survey was open for three weeks in May 2023. Responses were analysed using descriptive statistics.Abstract
Objectives
Methods
The aim of this study was to measure the effect of hospital case volume on the survival of revision total hip arthroplasty (RTHA). This is a retrospective analysis of Scottish Arthroplasty Project data, a nationwide audit which prospectively collects data on all arthroplasty procedures performed in Scotland. The primary outcome was RTHA survival at ten years. The primary explanatory variable was the effect of hospital case volume per year on RTHA survival. Kaplan-Meier survival curves were plotted with 95% confidence intervals (CIs) to determine the lifespan of RTHA. Multivariate Cox proportional hazards were used to estimate relative revision risks over time. Hazard ratios (HRs) were reported with 95% CI, and From 1999 to 2019, 13,020 patients underwent RTHA surgery in Scotland (median age at RTHA 70 years (interquartile range (IQR) 62 to 77)). In all, 5,721 (43.9%) were female, and 1065 (8.2%) were treated for infection. 714 (5.5%) underwent a second revision procedure. Co-morbidity, younger age at index revision, and positive infection status were associated with need for re-revision (p<0.001). The ten-year survival estimate for RTHA was 93.3% (95% CI 92.8 to 93.8). Adjusting for sex, age, surgeon volume, and indication for revision, high hospital case volume was not significantly associated with lower risk of re-revision (HR1, 95% CI 1.00 to 1.00, The majority of RTHA in Scotland survive up to ten years. Increasing yearly hospital case volume cases is not independently associated with a significant risk reduction of re-revision.
The optimal alignment technique for total knee replacement (TKR) remains controversial. We previously reported six-month and two-year results of a randomized controlled trial comparing kinematically (KA) versus mechanically (MA) aligned TKR. In the present study, we report 12-year results from this trial. The original cohort included 88 TKRs (44 KA using Shape Match patient-specific guides and 44 MA using conventional instrumentation), performed from 2008 to 2009. After IRB approval, the health record of the original 88 patients were queried. Revisions, re-operations, and complications were recorded. The non-deceased patients were contacted via phone. Reoperation and complications were documented via the patient's history. Further, a battery of patient-reported outcome measures (including patient satisfaction, WOMAC, Oxford, KOOS Jr, Forgotten Joint Score, and M-SANE) were obtained.Abstract
Introduction
Methods
Adverse reactions to pain medication and pain can delay discharge after outpatient knee arthroplasty (TKA). Pharmacogenomics is an emerging tool that might help reduce adverse events by tailoring medication use based on known genetic variations in the CYP genes determining drug metabolism. This study was undertaken to evaluate whether pre-operative pharmacogenomic testing could optimize peri-operative pain management in patients undergoing total knee arthroplasty (TKA). This prospective, randomized study was performed in adults undergoing primary TKA. Patients in the experimental group underwent pre-operative pharmacogenomic evaluation and medication adjustments. Medications were not optimized for control patients. The Overall Benefit of Analgesic Score (OBAS) at 24 hours post-op was the primary outcome. Postoperative pain scores (VAS scale), total opioid use, time in recovery, and time to discharge were also compared.Abstract
Introduction
Methods
Minimum clinically important differences (MCIDs) are critical to understanding changes in patient-reported outcome measure (PROM) scores after total joint arthroplasty (TJA). The usage and adoption of MCIDs not been well-studied. This study was performed to IDENTIFY trends in PROM and MCID use after TJA over the past decade. All articles published in the calendar years of 2010 and 2020 in CORR, JBJS, and the Journal of Arthroplasty were reviewed. Articles relating to clinical outcomes in primary total hip arthroplasty (THA) or total knee arthroplasty (TKA) were included. For each article, all reported PROMs and (if present) accompanying MCIDs were recorded. The use of PROMs and MCIDs were compared between articles published in 2010 and 2020.Abstract
Introduction
Methods
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also produced via 3D culture and then bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel composite bioinks were created by mixing different ratios of methacrylated alginate (AlgMA) with methacrylated gelatin (GelMA). Chondrocytes or mesenchymal stem cells (MSCs) were then encapsulated in the bioinks and 3D bioprinted using a custom-built extrusion bioprinter. UV and double-ionic (BaCl2 and CaCl2) crosslinking was deployed following bioprinting to strengthen bioink stability in culture. Chondrocyte and MSC spheroids were also bioprinted to accelerate cell growth and development of ECM in bioprinted constructs. Excellent viability of chondrocytes and MSCs was seen following bioprinting (>95%) and maintained in culture over 28 days, with accelerated cell growth seen with inclusion of MSC or chondrocyte spheroids in bioinks (p<0.05). Bioprinted 10mm diameter constructs maintained shape in culture over 28 days, whilst construct degradation rates and mechanical properties were improved with addition of AlgMA (p<0.05). Composite bioinks were also injected into in vitro osteochondral defects (OCDs) and crosslinked in situ, with maintained cell viability and repair of osteochondral defects seen over a 14-day period. In conclusion we developed novel composite AlgMA/GelMA bioinks that can be triple-crosslinked, facilitating dense chondrocyte and MSC growth in constructs following 3D bioprinting. The bioink can be injected or 3D bioprinted to successfully repair in vitro OCDs, offering hope for a new approach to treating AC defects.
Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient biomechanics. This study aimed to quantify axial torque in the femur during ROM assessment in total hip arthroplasty to define performance criteria against which hip instruments can be verified. Longer term, this information may provide the ability to quantitatively assess joint stability, extending to quantitation of bone preparation and quality. Joint loads measured with strain-gaged instruments in five cadaveric femurs prepared using posterior approach were analysed. Variables such as surgeon-evaluator, trial offset and specimen leg and weight were used to define 13 individual setups and paired with surgeon appraisal of joint tension for each setup. Peak torque loads were then identified for specific motions within the ROM assessment. The largest torque measured in most setups was observed during maximum extension and external rotation of the joint, with a peak torque of 13Nm recorded in a specimen weighing 98kg. The largest torque range (19.4Nm) was also recorded in this specimen. Other motions within the trial reduction showed clear peaks in applied torque but with lower magnitude. Relationships between peak torque, torque range and specimen weight produced an R2 value greater than 0.65. The data indicated that key influencers of torsional loads during ROM were patient weight, joint tension and limb motion. This correlation with patient weight should be further investigated and highlights the need for population representation during cadaveric evaluation. Although this study considered a small sample size, consistent patterns were seen across several users and specimens. Follow-up studies should aim to increase the number of surgeon-evaluators and further vary specimen size and weight. Consideration should also be given to alternative surgical approaches such as the Direct Anterior Approach.
Revision Total Knee Arthroplasty (rTKA) is predicted to increase by more than 600% between 2005 and 2030. The survivorship of primary TKA has been extensively investigated, however more granular information on the risks of rTKA is needed. The aim of the study was to investigate the incidence of re-revision TKA, with explanatory variables of time from primary to revision, and indication (aseptic vs septic). Secondary aim was to investigate mortality. This is an analysis of the Scottish Arthroplasty Project data set, a national audit prospectively recording data on all joint replacements performed in Scotland. The period from 2000 to 2019 was studied. 4723 patients underwent revision TKA. The relationship between time from primary to revision TKA and 2nd revision was significant (p<0.001), with increasing time lowering probability of re-revision (OR 0.99 95% CI 0.987 to 0.993). There was no significant association in time to first revision on time from 1st revision to re-revision (p>0.05). Overall mortality for all patients was 32% at 10 years (95% CI 31-34), Time from primary TKA to revision TKA had a significant effect on mortality: p=0.004 OR 1.03 (1.01-1.05). Septic revisions had a reduced mortality compared to aseptic, OR 0.95 (0.71-1.25) however this was not significant (p=0.69). This is the first study to demonstrate time from primary TKA to revision TKA having a significant effect on probability of re-revision TKA. Furthermore the study suggests mortality is increased with increasing time from primary procedure to revision, however decreased if the indication is septic rather than aseptic.
Meniscal root tears can result from traumatic injury to the knee or gradual degeneration. When the root is injured, the meniscus becomes de-functioned, resulting in abnormal distribution of hoop stresses, extrusion of the meniscus, and altered knee kinematics. If left untreated, this can cause articular cartilage damage and rapid progression of osteoarthritis. Multiple repair strategies have been described; however, no best fixation practice has been established. To our knowledge, no study has compared suture button, interference screw, and HEALICOIL KNOTLESS fixation techniques for meniscal root repairs. The goal of this study is to understand the biomechanical properties of these fixation techniques and distinguish any advantages of certain techniques over others. Knowledge of fixation robustness will aid in surgical decision making, potentially reducing failure rates, and improving clinical outcomes. 19 fresh porcine tibias with intact medial menisci were randomly assigned to four groups: 1) native posterior medial meniscus root (PMMR) (n = 7), 2) suture button (n = 4), 3) interference screw (n = 4), or 4) HEALICOIL KNOTLESS (n = 4). In 12 specimens, the PMMR was severed and then refixed by the specified group technique. The remaining seven specimens were left intact. All specimens underwent cyclic loading followed by load-to-failure testing. Elongation rate; displacement after 100, 500, and 1000 cycles; stiffness; and maximum load were recorded. Repaired specimens had greater elongation rates and displacements after 100, 500, and 1000 cycles than native PMMR specimens (p 0.05). The native PMMR showed greater maximum load than all repair techniques (p 0.05). In interference screw and HEALICOIL KNOTLESS specimens, failure occurred as the suture was displaced from the fixation and tension was gradually lost. In suture button specimens, the suture was either displaced or completely separated from the button. In some cases, tear formation and partial failure also occurred at the meniscus luggage tag knot. Native PMMR specimens failed through meniscus or meniscus root tearing. All fixation techniques showed similar biomechanical properties and performed inferiorly to the native PMMR. Evidence against significant differences between fixation techniques suggests that the HEALICOIL KNOTLESS technique may present an additional option for fixation in meniscal root repairs. While preliminary in vitro evidence suggests similarities between fixation techniques, further research is required to determine if clinical outcomes differ.
Major orthopaedic fractures are an independent risk factor for the development of venous thromboembolism (VTE), which are significant causes of preventable morbidity and mortality in trauma patients. Despite thromboprophylaxis, patients who sustain a pelvic or acetabular fracture (PA) continue to have high rates of VTE (12% incidence). Thrombelastography (TEG) is a whole-blood, point-of-care test which provides an overview of the clotting process. Maximal amplitude (MA), from TEG analysis, is the measure of clot strength and values ≥65mm have been used to quantify hypercoagulability and increased VTE risk. Therefore, the primary aim was to use serial TEG analysis to quantify the duration of hypercoagulability, following surgically treated PA fractures. This is a single centre, prospective cohort study of adult patients 18 years or older with surgically treated PA fractures. Consecutive patients were enrolled from a Level I trauma centre and blood draws were taken over a 3-month follow-up period for serial TEG analysis. Hypercoagulability was defined as MA ≥65mm. Exclusion criteria: bleeding disorders, active malignancy, current therapeutic anticoagulation, burns (>20% of body surface) and currently, or expecting to become pregnant within study timeframe. Serial TEG analysis was performed using a TEG6s hemostasis analyzer (Haemonetics Corp.) upon admission, pre-operatively, on post-operative day (POD) 1, 3, 5, 7 (or until discharged from hospital, whichever comes sooner), then in follow-up at 2-, 4-, 6-weeks and 3-months post-operatively. Patients received standardized thromboprophylaxis with low molecular weight heparin for 28 days post-operatively. VTE was defined as symptomatic DVT or PE, or asymptomatic proximal DVT, and all participants underwent a screening post-operative lower extremity Doppler ultrasound on POD3. Descriptive statistics were used to determine the association between VTE events and MA values. For the primary outcome measure, the difference between the MA threshold value (≥65mm) and serial MA measures, were compared using one-sided t-tests (α=0.05). Twenty-eight patients (eight females, 29%) with a mean age of 48±18 years were included. Acetabular fractures were sustained by 13 patients (46%), pelvic fractures by 14 patients (50%), and one patient sustained both. On POD1, seven patients (25%) were hypercoagulable, with 21 patients (78%) being hypercoagulable by POD3, and 17 patients (85%) by POD5. The highest average MA values (71.7±3.9mm) occurred on POD7, where eight patients (89%) were hypercoagulable. At 2-weeks post-operatively, 16 patients (94%) were hypercoagulable, and at four weeks, when thromboprophylaxis was discontinued, six patients (40%) remained hypercoagulable. Hypercoagulability persisted for five patients (25%) at 6-weeks and for two patients (10%) by three months. There were six objectively diagnosed VTE events (21.4%), five were symptomatic, with a mean MA value of 69.3mm±4.3mm at the time of diagnosis. Of the VTE events, four occurred in participants with acetabular fractures (three male, 75%) and two in those with pelvic fractures (both males). At 4-weeks post-operatively, when thromboprophylaxis is discontinued, 40% of patients remained hypercoagulable and likely at increased risk for VTE. At 3-months post-operatively, 10% of the cohort continued to be hypercoagulable. Serial TEG analysis warrants further study to help predict VTE risk and to inform clinical recommendations following PA fractures.
Cite this article:
A Core Outcome Set (COS) for treatment of adolescent idiopathic scoliosis (AIS) is essential to ensure that the most meaningful outcomes are evaluated and used consistently. Measuring the same outcomes ensures evidence from clinical trials and routine clinical practice of different treatments can be more easily compared and combined, therefore increasing the quality of the evidence base. The SPINE-COS-AYA project aims to develop a gold standard COS which can be used internationally in research and routine clinical practice to evaluate the treatment (surgical and bracing) of AIS. In this qualitative study, the views of adolescents and young adults with AIS (10-25 years of age), their family members and healthcare professionals in a UK region were sought, via interviews, on treatment outcomes. Participants were purposively recruited from a variety of sources including NHS outpatient clinics and social media. Semi-structured interviews were analysed using thematic analysis. Key findings will be presented, to include potential core outcome domains identified by the different subgroups. The core outcome domains identified in this research programme will subsequently form part of an international consensus survey to agree a COS. In future, if the COS is used by healthcare staff and researchers, it will be easier for everyone, including patients and their families, to assess which treatment works best.
Periprosthetic joint infection (PJI) is a common cause of revision total knee surgery. Although debridement and implant retention (DAIR) has lower success rates in the chronic setting, it is an accepted treatment for acute PJI. There are two broad DAIR strategies: single debridement or a planned double debridement performed days apart. The purpose of this study is to evaluate the cost-effectiveness of single versus double DAIR with antibiotic beads for acute PJI in total knee arthroplasty (TKA). A decision tree using single or double DAIR as treatment strategies for acute PJI was constructed. Quality Adjusted Life Years (QALYs) and costs associated with the two treatment arms were calculated. Treatment success rates, failure rates, and mortality rates were derived from the literature. Medical costs were derived from both the literature and Medicare data. A cost-effectiveness plane was constructed from multiple Monte Carlo trials. A sensitivity analysis identified parameters most influencing the optimal strategy decision.Abstract
Introduction
Methodology