Sequentially annealed, highly crosslinked polyethylene (HXLPE) has been used clinically in total knee arthroplasty (TKA) for over a decade[1]. However, little is known about the reasons for HXLPE revision, its surface damage mechanisms, or its Four hundred and fifty-six revised tibial inserts in two cohorts (sequentially annealed and conventional UHMWPE control) were collected in a multicenter retrieval program between 2000 and 2016. We controlled for implantation time between the two cohorts by excluding tibial inserts with a greater implantation time than the longest term sequentially annealed retrieval (9.5 years). The mean implantation time (± standard deviation) for the sequentially annealed components was 1.9 ± 1.7 years, and for the control inserts, 3.4 ± 2.7 years (Figure 1). Reasons for HXLPE revision were assessed based on medical records, radiographs, and examinations of the retrieved components. Surface damage mechanisms were assessed using the Hood method[2]. Oxidation was measured at the bearing surface, the backside surface, the anterior and posterior faces, as well as the post (when available) using FTIR (ASTM F2102). Surface damage and oxidation analyses were available for 338 of the components. We used nonparametric statistical testing to analyze for differences in oxidation and surface damage when adjusting for polyethylene formulation as a function of implantation time.Background
Methods