Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 416 - 416
1 Dec 2013
Massari L Causero A Rossi P Grillo PP Bistolfi A Gigliofiorito G Pari C Francescotto A Tosco P Deledda D Carli G Burelli S
Full Access

Introduction

Trabecular Titanium™ is a highly porous biomaterial with a regular hexagonal cell structure, which has shown excellent mechanical properties. Several in vitro studies reported promising data on its osteoinductive and osteoconductive properties. Furthermore, it has demonstrated in vivo to enhance bone in-growth. Aim of this multicentre prospective study was to assess Trabecular Titanium™ osseointegration by measuring change in bone mineral density (BMD) around a cementless DELTA-TT cup with dual-emission X-ray absorptiometry (DXA).

Methods

89 patients (91 hips) underwent primary THA with DELTA-TT cups (Lima Corporate) between 2009 and 2010. There were 46 (52%) men and 43 (48%) women, with a median (IQR) age of 67 (57–70) years and a median (IQR) BMI of 26 (24–29) kg/m2. Right side and left side were affected in 44 (48%) and 47 (52%) cases, respectively. Underlying pathology was primary osteoarthritis in 80 (88%) cases, osteonecrosis in 5 (6%), post-traumatic osteoarthritis in 3 (3%), developmental dysplasia of the hip in 2 (2%) and oligoarthritis in 1 (1%). BMD was determined by DXA using DeLee and Charnley 3 Regions of Interest (ROI) at 7 days, 3, 6, 12 and 24 months. Clinical evaluation (Harris Hip Score, HHS), patient health status survey (SF-36) and radiographic assessment were performed preoperatively and at the same time-points. Data were analyzed using non-parametric tests (Mann-Whitney, Wilcoxon signed-rank) and a p < 0.05 as threshold for statistical significance.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 201 - 201
1 Sep 2012
Devine D Arens D Burelli S Bloch HR Boure L
Full Access

The osteointegration of a new three-dimensional reticular titanium material, Trabecular Titanium™, was assessed using a bilateral cancellous (distal femur, proximal tibia) and cortical (tibia diaphysis) bone drill hole model in 18 sheep. TT is a novel Ti6Al4V material characterized by a high open porosity and composed of multi-planar regular hexagonal cells. Two 5.0 mm diameter, 12 mm long cylinders (TT1 & TT2) of two different porosities (TT1:650 μm, TT2:1250 μm) were tested and compared to two solid predicate 5.0 mm diameter, 12 mm long Ti cylinders (PT1 & PT2) coated with porous Ti (PT1: vacuum-plasma spray coating; PT2: inert-gas shielding arc spray coating).

Each implant type was surgically implanted at 4 separate locations in each sheep (16 implants per sheep). Three timepoints of 4, 16 and 52 weeks (n=6 sheep per timepoint) were used. Bone-implant interface was analyzed ex vivo by the determination of: 1) the shear strength (SS) measured during a push out test, 2) the percentage of bone in-growth (%B) using histomorphometry, 3) the bone apposition rate using fluorochrome labelling analysis and 4) the bone-implant contact using backscattered scanning electron microscopy (SEM). An ANOVA with a Bonferroni Post hoc test were used to detect differences between tested and predicate implants. P values 0.05 were considered significant.

At 4 weeks, 5 out of the 6 TT1 could be pushed out of the cortical bone (COB) samples. The remaining TT1 collapsed during testing. All TT1 could be pushed of the cancellous bone (CAB) samples. Four out of the 6 TT2 could be pushed out of CAB and of the COB samples. At 16 and 52 weeks, only one TT1 and one TT2 could be pushed out of the bone samples, the remaining implants collapsed during testing. All the PTs were successfully pushed out at all timepoints.

The mean %B of PT1 and PT2 did not significantly increase over time. For both materials, the mean %B ranged between 1.7% and 4.4% at 4 weeks and between 5.7% and 6.5% at 52 weeks. The mean %B of TT1 significantly increased over time in both COB (10.2% at 4 weeks, 46.2% at 16 weeks, 50.5% at 52 weeks) and CAB (5.8%, 23.9%, 24.3%). Similarly, the mean %B of TT2 significantly increased over time in both COB (7.8%, 48.6%, 65%) and CAB (4.5%, 24.1%, 38.6%). Bone apposition rates for the TT implants remained superior to 2 μm/day for the entire duration of the study. SEM showed an intimate bone-implant contact for all implant types at all timepoints.

At 16 and 52 weeks, histomorphometry revealed an extensive osteointegration of the TT specimens. Bone-implant interface strength was so high for the TT implants that they could not be pushed out of the bone samples. The results of this study would indicate that the TT implants provide a good scaffold for bone in-growth.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 142 - 142
1 Jun 2012
Massari L Bistolfi A Grillo PP Causero A Burelli S Gigliofiorito G Menosso P Carli G Bloch HR
Full Access

INTRODUCTION

Trabecular Titanium™ is an innovative material characterised by an high open porosity and composed by multi-planar regular hexagonal cells. It is not a traditional coating and its tri-dimensional structure has been studied to optimise osteointegration. Furthermore, it has excellent mechanical properties, as a very high tensile and fatigue resistance and an elastic module very similar to the that of the trabecular bone. The aim of this study is to evaluate the osteointegration and bone remodelling measuring the longitudinal pattern of change in BMD around a cementless acetabular cup made from Trabecular Titanium™ (Delta TT cup, Lima Corporate, Italy) in primary total hip arthroplasty (THA).

METHODS

Dual-energy x-ray absorptiometry (DEXA) analysis, radiographic evaluation on standard AP and lateral views and clinical evaluation with Harris Hip Score (HHS) and SF-36 were performed at 1 week, 3, 6, 12 months after surgery.