Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 518 - 518
1 Aug 2008
Barzilay Y Bronstein Y Hernandez M Hasharoni A Kaplan L
Full Access

Introduction: Spinal deformities (scoliosis, kyphosis or kyphoscoliosis) in children under 10 years of age result from congenital, neuromuscular and idiopathic etiologies. The progression of the deformity is affected by its nature, location and age of onset. Spinal arthrodesis is the procedure of choice in patients with progressive deformities. The use of instrumentation facilitates curve correction and arthrodesis rates. Pediatric spinal surgery is technically demanding, and is still considered controversial. The advent of reduced size spinal instrumentation allowed surgeons to expand their use to pediatric patients. The use of spinal instrumentation in children with various spinal deformities has not been well documented.

Objective: To assess the safety and efficacy of spinal arthrodesis in young patients with progressive spinal deformities.

Patients and Methods: We retrospectively reviewed the medical charts and radiographs of 25 patients younger than 10 years of age who underwent corrective surgery for various spinal deformities. Radiographic outcome, fusion rates and complication were compared between instrumented and non instrumented patients.

Results: At two years of follow up instrumented corrective procedures resulted in superior correction compared to non-instrumented patients and in solid arthrodesis in all. Complications were infrequent.

Conclusions: The use of reduced size spinal instrumentation in young patients with progressive spinal deformities is safe and effective. Curve correction, length of bracing and fusion rates are all in favour of instrumentation, wile complication rates are acceptable. The use of spinal instrumentation in young patients requires expertise and patience.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 341 - 341
1 May 2006
Kaplan L Barzilay Y Rivkin R Bronstein Y Hasharoni A Finkelstein J
Full Access

Purpose: To describe the role of osteotomies in rigid spinal deformities

Patients and Methods: One hundred fifty six patients with spinal deformities undergoing surgery between March 1998 and August 2005 were identified from our spine registry. Our study cohort included 23 cases where osteotomies were performed for correction.

Corrective osteotomies were one of: 1) wedge osteotomy convex based; 2) wedge osteotomy dorsally based; 3) complex wedge or eggshell osteotomy for combined frontal and sagittal plane deformity. Patient’s demographics, type of deformity, underlying conditions, operative results, complications, and need for secondary procedures were documented.

Results: Twenty three patients (15%) with rigid curves underwent osteotomies as part of their corrective surgery. Mean age in this cohort was 11.3 years (2–26), 35% were males, 65% females. In 17 of the patients the main deformity was scoliosis, in 5 – kyphosis and in – 1 lordosis. MMC was the leading underlying condition in 4 cases, followed by VACTER syndrome (2), congenital myopathy (2), arthrogryposis and pterygium (2), Neuro-blastoma (1) and other congenital conditions. Operative results were satisfactory in terms of cosmetics, alignment and function. In 3 cases (13%) complications were encountered, with 2 infections requiring debridement, (one requiring hardware removal) and 1 Neurofibromatosis patient undergoing her 8th surgical procedure, developing an intraoperative partial neurological injury with nearly full recovery.

Conclusions: Osteotomies are an important part of surgery in rigid spinal deformities. These deformities occur frequently in syndromatic children making peri-operative treatment more complex. Osteotomies facilitate better outcome in terms of correction, sagittal and coronal balance and cosmetics. These procedures are highly demanding technically. However, it is our opinion that adequate correction of rigid deformity with the benefit of spinal column shortening by way of osteotomy, is protective from significant neurological traction injuries that otherwise may occur.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 317 - 317
1 Nov 2002
Goldman V Peyser A Bronstein Y Golomb G Shushan S Liebergall M
Full Access

Objective: The objective of this study was to compare the influence of different hyperthemic processes (autoclave and microwave oven) on the morphologic and thermodynamic properties of collagen.

Summary and Background Data: The current thinking regarding the treatment of human bone tumors is a radical excision, attempting to preserve the function of the limb. An acceptable method for limb preservation is reimplantation of the affected bone after the debridement of gross tumor tissue and sterilization by means of autoclave. This hyperthermic processing technique provides a perfectly sized graft, but it is associated with a decline in the mechanical and biological properties of the bone. A previous study demonstrated that sterilization using a microwave kills all viable cells with a minimal decrease in the mechanical and biological properties of the bone. Possible explanation of this phenomenon is preservation of matrix protein such as collagen. The current study’s goal was to investigate the effect of different hyperthermic treatments on native collagen.

Materials and Methods: In this study we used Heilistat-absorbable collagen sponge (American biomaterials corporation, Plainsboro, NJ 08536). This collagen was divided into three study groups. The first group was processed in the autoclave, the second in a microwave oven and the third which served as the control group received no thermal treatment. The thermodynamic properties of these three groups were checked by Differential Scanning Calorimetry (DSC) and Thermo-Gravimetric Analysis (TGA). The morphological structure was examined by Scanning Electron Microscope (SEM), Phillips. Accelerating Voltage 30 KV.

Results: Thermodynamic properties: The peak temperature and the amount of energy invested showed similar results in the control group and in the microwave group, and differed from the results of the group treated by autoclave. The graphs of TGA, which represent the weight decrease as a function of heating, were also similar in the microwave group and the control group.

The morphological structure of the collagen, namely, the architectural structure of the material and single fibers, as shown by the SEM in various magnifications (100, 1200, 2500 and 5000), was much more similar when comparing between the control group and the microwave group than in the autoclave processed group.

Conclusion: Hyperthermic treatment using a microwave oven has minimal effect, if any, on the native collagen of bone, causing only minimal damage to the morphological and thermodynamic properties of bone. This observation may explain the biological superiority of the microwave treatment over autoclave treatment of bone.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 298 - 298
1 Nov 2002
Bronstein Y Barzilay Y Kaplan L
Full Access

Treatment of congenital kyphosis with severe angular dysplastic spine in children with myelomeningocele (MMC) is one of the most difficult spinal procedures. Most of the surgeons support kyphectomy with long segmental spinal instrumentation and postoperative immobilization by thoracolumbosacral orthosis.

Several spinal deformities are seen frequently in patients who have MMC. The deformity may be congenital or paralytic. Congenital lumbar kyphosis is less common, but most difficult in patients with MMC, occurring in 10–20% of patients. Most curves are congenital and rigid, often more than 80° at birth, and rapidly progresses.

With progression of kyphotic deformity, patients experience recurrent skin breakdown over the apex of the kyphos; impaired sitting balance; the necessity of using their hands for support; collapsing spine and decreasing of lumbar height reduce the capacity of the abdominal cavity and resulting in reduced respiratory capacity and malnutrition. The poor posture and short abdomen make it difficult to manage the patients’ urological needs. A severe deformity raises difficulties in social and psychological development.

Non-operative treatment with spinal orthoses may provide only temporary correction of a kyphotic deformity, but does not prevent progression and skin breakdown.

The goal of surgical treatment is correction of spinal deformity by long segmental instrumentation and achievement of a solid spine fusion in order to allow a balanced sitting position and to prevent complications.

From 1983 to 2001, 6 patients with thoracic level myelomeningocele and severe kyphotic deformity were referred for surgical correction. There were 5 males and 1 female patients with average age at the time of surgery of 8.3 years (range 4.3–13 years). All patients suffered from severe kyphosis, range 90° to 130°, average – 108°. All of them underwent posterior ligation of spinal cord during resection of lordotic segment of the kyphos, and segmental spinal fixation of the deformity from the thoracic spine to the sacrum. In all cases following the resection of the vertebrae it was possible to correct the deformity.

All patients were available for follow-up with range of 6–216 months, average 85 months. All of them were satisfied with the surgical outcome and presented in their final clinical examination with balanced and comfortable sitting, without soft tissue complications. In all cases a significant correction of the deformity was achieved (15°–30°) and enabled comfortable and stable sitting. Two patients suffered post-operative complications, one from surgical wound infection which required surgical debridement followed by soft tissue covering, and the other suffered from distal migration of the rod which was shortened later on.

Discussion: Kyphotic deformity in a patient who has MMC is a challenge for the orthopaedic surgeon and requires major surgical intervention. Resection of the kyphos with posterior instrumentation and fusion may solve patient’s functional problems.